期刊文献+

有限区间上多辛Preissmann格式及其附加条件 被引量:1

Multi-symplectic Preissmann Scheme in Finite Interval and Its Complementary Condition
下载PDF
导出
摘要 对于有限区间上偏微分方程Hamilton型PDEs的多辛Preissmann格式必须引入附加条件 ,否则对于KdV方程是不能使用的 ,而对于G .B .方程则不能得到正确的结果 .论文分别具体给出了KdV方程和G .B .方程的这种附加条件 .数值实例显示使用附加条件后由该格式得到的数值解表示的孤立子演化过程和其对应理论解表示的该过程是一致的 。 The multi symplectic Preissmann scheme for the Hamiltonian PDEs of certain PDE in finite interval must have complementary condition to it, othewise it can not be used for the KdV equation and no proper results can be achieved for G.B.equations. Here the complementary condition is given for the KdV and G.B. equation, respectively. The numerical experiments of the Preissmann scheme with the complementary condition in finite intervals show that the temporal evolution of the solitons coincide with the theoratical ones very well and that the scheme is numerically stable over long time.
作者 蒋长锦
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2002年第4期403-411,共9页 JUSTC
关键词 Hamilton型PDEs 多辛积分 多辛Preissmann格式 附加条件 孤立子 数值解 偏微分方程 KDV方程 有限区间 Hamiltonian PDEs multi symplectic integrators Preissmann scheme complementary condition soliton numerical solution
  • 相关文献

参考文献7

  • 1[1]Feng Kang and Qin Meng-Zhao. The symplectic methods for the computation of hamiltonian equations[C]. Lecture Notes in Mathematics. 1297, Spring-Verlag, 1987,1-37.
  • 2[2]Bridges T J. Multi-symplectic structures and wave propagation [C]. Math. Proc. Cam. Phil. Soc. 121(1997), 147-190.
  • 3[3]Bridges T J and Reich S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[Z]. preprint Department of mathematics and statistics, University of Surrey, 1999.
  • 4[4]Bridges T J and Derks G. Unstable eigenvalues, and the linearization about solitary waves and fronts with symmetry[C], Proc. Roy. Soc. Lond. A(1999).
  • 5[5]Zhao Ping-Fu and Qin Meng-Zhao. Multisymplectic geometry and multisymplectic Preissmann Scheme for the KdV equation[J]. J. Phys. A: Math. Gen.,2000,33: 3613-3626.
  • 6[6]Manoranjan V S, Mitchell A R and Morris J L. Numerical solutions of the "good" Boussinesq equation[J]. SIAM. J. Sci. Stat. Comput., 1984,5:946-957.
  • 7[7]Zeng Wen-ping, Qin Meng-zhao, Huang Lang-yang. Construction of multi-symplectic scheme for "good" Boussinesq Equation[C]. CCAST-WL WORKSHOP, reading Materical 6(1), International Workshop on Structure-Preserving Algorithms, Beijing, 2001, 107-124.

同被引文献18

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部