期刊文献+

基于自适应霍夫曼和Golomb-Rice混合编码的WSN无损压缩算法 被引量:7

Lossless Compression Algorithm Based on Hybrid Coding of Adaptive Huffman and Golomb-Rice for WSN
下载PDF
导出
摘要 针对传统无线传感器网络(WSN)数据压缩算法不能兼顾压缩效率和数据丢失的问题,提出利用自适应Huffman与Golomb-Rice混合编码的快速高效无损自适应压缩算法。将自适应Huffman编码与Golomb-Rice编码相结合,解决可变长和动态性问题,并使用启发式方法估计非负编码参数,通过莱斯映射函数变换拉普拉斯分布误差项,将近似几何分布的非负整数作为熵编码器的输入,利用自适应熵编码独立压缩采样数据块。在Sensor Scope真实环境WSN数据集上的实验结果表明,该算法实现了每个样本4.11位的压缩率,最高可节省70.61%的功率,压缩性能和压缩速率均优于S-LZW,LEC等压缩算法。 Aiming at the problem that traditional Wireless Sensor Network(WSN) data compression algorithms cannot take both compression efficiency and data loss into account, a fast and efficient Lossless Adaptive Compression (LAC) algorithm based on adaptive Huffman coding and Golomb-Rice coding is proposed. Hybrid coding of adaptive Huffman and Golomb-Rice is used to solve the problem of variable length and dynamic. Heuristic method is used to simply estimate non-negative Golomb-Rice coding parameters proposed. A rice mapping function is used to transform the Laplace distribution error term so as to approximate the geometric distribution of nonnegative integers, which are used as the input of entropy encoder. Adaptive entropy coding is used to independently compress sampling data block. Experimental results on real environment WSN dataset from SensorScope show that the proposed algorithm acnieves a compression ratio of 4.11 per sample, and can realize power savings of up to 70.61% . Besides, compression performance and compression rate of the proposed algorithm are better than that of S-LZW,LEC and other compression algorithms.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第7期86-93,共8页 Computer Engineering
基金 国家自然科学基金资助项目(U1404602) 河南省高等学校重点科研基金资助项目(15B520006) 河南省教师教育课程改革基金资助项目(2014-JSJYYB-026) 河南师范大学青年科学基金资助项目(2014QK30)
关键词 无线传感器网络 熵编码 无损压缩 Golomb—Rice编码 HUFFMAN编码 Wireless Sensor Network (WSN) entropy coding lossless compression Golomb-Rice coding Huffman coding
  • 相关文献

参考文献15

  • 1张诚,罗炬锋,田文强,高丹,王营冠.城市环境下无线传感器网络信道测量与分析[J].计算机工程,2013,39(5):28-33. 被引量:8
  • 2Prathap U,Shenoy D P,Venugopal K R,et al.Wireless Sensor Networks Applications and Routing Protocols:Survey and Research Challenges[C]//Proceedings of IEEE ISCOS’12.Washington D.C.,USA:IEEE Press,2012:49-56.
  • 3洪璐,洪锋,李正宝,郭忠文.CT-TDMA:水下传感器网络高效TDMA协议[J].通信学报,2012,33(2):164-174. 被引量:10
  • 4蒋畅江,石为人,唐贤伦,王平,向敏.能量均衡的无线传感器网络非均匀分簇路由协议[J].软件学报,2012,23(5):1222-1232. 被引量:222
  • 5Srisooksai T,Keamarungsi K,Lamsrichan P,et al.Practical Data Compression in Wireless Sensor Networks:A Survey[J].Journal of Network and Computer Applications,2012,35(1):37-59.
  • 6Yao Liang.Efficient Temporal Compression in Wireless Sensor Networks[C]//Proceedings of the 36th IEEE Conference on Local Computer Networks.Clearwater Beach,USA:IEEE Press,2011:466-474.
  • 7Marcelloni F,Vecchio M.Enabling Energy-efficient and Lossy-aware Data Compression in Wireless Sensor Networks by Multi-objective Evolutionary Optimization[J].Information Sciences,2010,180(10):1924-1941.
  • 8Zordan D,Martinez B,Vilajosana I,et al.On the Performance of Lossy Compression Schemes for Energy Constrained Sensor Networking[J].ACM Transactions on Sensor Networks,2014,11(1):15-22.
  • 9O’Connor S M,Lynch J P,Gilbert A C.Compressed Sensing Embedded in an Operational Wireless Sensor Network to Achieve Energy Efficiency in Long-term Monitoring Applications[J].Smart Materials and Structures,2014,23(8):85-95.
  • 10Medeiros H P,Maciel M C,Demo S R,et al.Lightweight Data Compression in Wireless Sensor Networks Using Huffman Coding[J].International Journal of Distributed Sensor Networks,2014(4):89-98.

二级参考文献56

共引文献251

同被引文献49

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部