期刊文献+

理想格上高效的身份基加密方案 被引量:1

Efficient Identity-based Encryption Scheme over Ideal Lattice
下载PDF
导出
摘要 基于格的身份基加密方案是近年来密码学研究的热点之一,但是标准格上的身份基方案密钥大且密文扩张率高。为此,基于理想格构造一个密钥较小且密文扩展率较低的身份基加密方案。采用基于NTRU的数字签名与理想格上的对偶加密相结合的方法,在随机预言机模型下证明其安全性。分析结果表明,密钥生成中心的公钥和私钥分别只含有1个和4个环元素,用户的解密密钥只含有2个环元素,密文只含有2个环元素且密文扩张率较小,加密和解密分别只需要4次和2次多项式环上的乘法。与基于传统数论的身份基加密方案相比,提出方法的计算效率更高。 Recently, Identity-based Encryption (IBE) scheme based on lattices becomes one of the focuses of cryptographic research. But the IBE scheme based on standard lattice have large key size and high ciphertext expansion rate. So based on ideal lattices,this paper presents an efficient identity-based encryption scheme with small key size and low ciphertext expansion rate. The proposed scheme uses a method that combines the NTRU digital signature and the dual encryption based on ideal lattices. It is provably secure in the random oracle model. Analysis results show that the public key and the private key of key generation center contain one ring element and four ring elements respectively. The decryption key of each user is comprised of two ring elements. The ciphertext contains only two ring elements and the ciphertext expansion rate is a small constant. The encryption and decryption require four and two multiplications in the polynomial ring. Hence,the IBE scheme is more computationally efficient than that of traditional number theory based IBE scheme.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第7期134-138,共5页 Computer Engineering
基金 广东省自然科学基金资助项目"后量子公钥密码关键技术研究"(S2013020011913)
关键词 理想格 身份基加密方案 可证明安全性 差错学习 高斯抽样 对偶加密 ideal lattice Identity-based Encryption ( IBE ) scheme provable security learning with errors Gaussian sampling dual encryption
  • 相关文献

参考文献21

  • 1Ducas L,Lyubashevsky V,Prest T.Efficient Identitybased Encryption over NTRU Lattices[C]//Proceedings of the 20th International Conference on the Theory and Application of Cryptology and Information Security.Berlin,Germany:Springer,2014:22-41.
  • 2Agrawal S,Boneh D,Boyen X.Efficient Lattice(H)IBE in the Standard Model[C]//Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques.Berlin,Germany:Springer,2010:553-572.
  • 3Lyubashevsky V,Prest T.Quadratic Time,Linear Space Algorithms for Gram-Schmidt Orthogonalization and Gaussian Sampling in Structured Lattices[C]//Proceedings of the 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques.Berlin,Germany:Springer,2015:789-815.
  • 4Peikert C.Public-key Cryptosystems from the Worst-case Shortest Vector Problem:Extended Abstract[C]//Proceedings of the 41st Annual ACM Symposium on Theory of Computing.New York,USA:ACM Press,2009:333-342.
  • 5Ducas L,Durmus A,Lepoint T,et al.Lattice Signatures and Bimodal Gaussians[C]//Proceedings of the 33rd Annual Cryptology Conference on Lattice Signatures and Bimodal Gaussians.Berlin,Germany:Springer,2015:789-815.
  • 6Hoffstein J,Pipher J,Silverman J H.NTRU:A Ring-based Public Key Cryptosystem[C]//Proceedings of the 3rd International Symposiun on Algorithmic Number Theory.Berlin,Germany:Springer,1998:267-288.
  • 7Hoffstein J,Pipher J,Silverman J H.NSS:An NTRU Lattice-based Signature Scheme[C]//Proceedings of International Conference on the Theory and Application of Cryptographic Techniques.Berlin,Germany:Springer,2001:211-228.
  • 8Lyubashevsky V,Peikert C,Regev O.On Ideal Lattices and Learning with Errors over Rings[J].Journal of the ACM,2013,60(6):1-23.
  • 9Shamir A.Identity-based Cryptosystems and Signature Schemes[C]//Proceedings of CRYPTO’84.Berlin,Germany:Springer,1984:47-53.
  • 10Boneh D,Franklin M K.Identity-based Encryption from the Weil Pairing[J].SIAM Journal on Computing,2003,32(3):213-229.

二级参考文献29

  • 1Shamir A. Identity-based cryptosystems and signature schemes[C]//Blakley G R, Chaum D. CRYPTO'84: Lecture Notes in Computer Science. German: Springer, 1984.
  • 2Boneh D, Franklin M K. Identity-based encryption from the weil pairing [C]// Kilian J. CRYPTO'01: Lecture Notes in Computer Science. German: Springer, 2001.
  • 3Waters B. Efficient identity-based encryption without random oracles [C]//Cramer R. EUROCRYPT' 05: Lecture Notes in Computer Science. German: Springer, 2005.
  • 4Gentry C. Practical identity-based encryption without random oracles [C]//EIi B. EUROCRYPT' 06: Lecture Notes in Computer Science. German: Springer, 2005.
  • 5Katz J, Wang N. Efficiency improvements for signature schemes with tight security reductions [C]// Jajodia S, Atluri V, Jaeger T. ACM Conference on Computer and Communications Security. US New York: ACM Press, 2003.
  • 6Attrapadung N, Furukawa J, Gomi T, et al. Efficient identity-based encryption with tight security reduction[C]//Pointcheval D, Mu Y, Chen K. CANS: Lecture Notes in Computer Science. German: Springer, 2006.
  • 7Nishioka M. Identity-based eneryptions with tight security reductions to the BDH problem [J].IEICE Trans Fundamentals, 2008, E91-A(5) : 1241-1252.
  • 8Kitagawa T, Yang P, Hanaoka G, et al. Generic transforms to acquire CCA-seeurity for identity based encryption: The cases of FOpkc and REACT [C]// Batten L M, Safavi-Naini R. ACISP; Lecture Notes in Computer Science. German: Springer, 2006.
  • 9Yang P, Kitagawa T, Hanaoka G, et al. Applying Fujisaki-Okamoto to identity-based encryption [C]// Fossorier M P C, Imai H, Lin S, et al. AAECC: Lecture Notes in Computer Science. German: Springer, 2006.
  • 10Kiltz E, Shoup V. The twin Diffie-Hellman and applications[C]//Smart N P. EURO- 08: Lecture Notes in Computer Science. Springer, 2008.

共引文献3

同被引文献8

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部