期刊文献+

一种新的高动态范围混合信号的弱分量获取方法

Study on New Method for Obtaining Weak Component of High Dynamic Range Mixed Signal
下载PDF
导出
摘要 为了有效地获取高动态范围混合信号中的微弱分量,提出了一种基于最小均方差的感知矩阵获取方法。这种新的感知矩阵可以在抑制强分量的同时保留微弱分量;该矩阵不仅满足约束等距性条件而且还可以有效地减少噪声干扰。实验结果表明,该方法能有效地实现高动态范围混合信号中微弱分量的获取。 In order to obtain the weak component of the high dynamic range mixed signal effectively, a method of obtaining a minimum mean square error was proposed. The new sensing matrix can preserve .the weak component while inhibiting the strong component, which can not only satisfy the constraint of the constraint, but also reduce the noise interference. Experimental results show that this method can effectively achieve the acquisition of weak components in high dynamic range mixed signal.
作者 罗浚溢 刘涛
出处 《仪表技术与传感器》 CSCD 北大核心 2016年第6期102-103,107,共3页 Instrument Technique and Sensor
基金 工信部重大专项项目(2015ZX01005004) 四川省科技厅科技支撑项目(2014GZ0171) 四川省教育厅基金项目(15ZB0382)
关键词 混合信号 高动态范围 微弱分量 最小均方差 mixed signal high dynamic range weak component minimum mean square error
  • 相关文献

参考文献7

  • 1MGRGAN D R.A/D conversion using geometric feedback AGC [ J ]. IEEE Trans. On Computer, 1975,24( 11 ).
  • 2DONOHO D. Compressed sensing. IEEE Trans [ J ]. Inform. Theory, 2006(52) : 1289-1306.
  • 3CAND E J,ROMBERG J,TAO T. Stable signal recovery from incomplete and inaccurate measurements[ J]. Communications on Pure and Applied Mathematics, 2006,59 (8) : 1207 - 1223.
  • 4MARK A, PETROS T. Signal processing with compressive measurements[ J]. IEEE Journal of Selected Topics in Signal Processing, 2010,4(2) :445-460.
  • 5DAVENPORT M, BOUFOUNOS P, BARANIUK R. Compressive domain interference cancellation [ C ]. Proceedings of the Workshop : Signal Processing with Adaptive Sparse Structured Representations (SPARS). Saint- Malo: International Center for Mathematical Sciences ,2009 : 1-5.
  • 6田鹏武,康荣宗,于宏毅.基于斜投影算子的压缩域滤波法[J].北京邮电大学学报,2012,35(3):108-111. 被引量:4
  • 7CANDES, ROMBERG J. Sparsity and incoherence in compressive sampling[ J ]. Inverse Problems, 2007,23 ( 3 ) : 969 - 985.

二级参考文献13

  • 1Cand-s E. Compressive sampling[ C ]//European Mathe- matical Society. Proceedings of International Congress of Mathematician. Madrid: European Mathematical Society Publishing House, 2006 : 1433-1452.
  • 2Cand-s E, Romberg J, Tao T. Robust uncertainty princi- ples:exact signal reconstruction from highly incomplete frequency information [ J ]. IEEE Trans on Inform Theo-ry, 2006, 52 (2) : 489-509.
  • 3Donoho D L. Compressed sensing[ J]. IEEE Trans on In- formation Theory, 2006, 52(4) : 1289-1306.
  • 4Donoho D L,Tsaig Y. Extensions of compressed sensing [J]. Signal Processing, 2006, 86(3) : 533-548.
  • 5Mark A, Petros T. Signal processing with compressive measuremente[ J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2) : 445-460.
  • 6Haupt J, Nowak R, Fudge G. Compressive sampling for signal classification [ C ]//IEEE Acoustics, Speech and Signal Processing Society. Proceedings of Asilomar Conf on Signal, Systems and Computers. Asilomar: IEEE, 2006 : 1785-1799.
  • 7I-Iaupt J,Nowark R. Compressive sampling for signal de- tection[ C]//IEEE Acoustics, Speech and Signal Pro- cessing Society. Proceedings of International Conf on Acoustics, Speech and Signal Processing (ICASSP). Honolulu: IEEE, 2007 : 1509-1512.
  • 8Cand-s E, Romberg J,Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J]. Commu- nications on Pure and Applied Mathematics, 2006, 59 (8) : 1207-1223.
  • 9Cand-s E,Tao T. Near-optimal signal recovery from ran- dom projections: universal encoding strategies? [ J ]. IEEE Trans on Information and Theory, 2006, 52(12) : 5406-5425.
  • 10Davenport M, Boufounos P, Baraniuk R. Compressive do- main interference cancellation [ C ]//Proceedings of the Workshop:Signal Processing with Adaptive Sparse Struc- tured Representations ( SPARS ). Saint-Malo: Interna- tional Centre for Mathematical Sciences, 2009: 1-5.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部