期刊文献+

微波消解-电感耦合等离子质谱(ICP-MS)法测定食品中汞的研究 被引量:19

Studies on Detemination of Mercury in Foods by Inductively Coupled Plasma- Mass Spectram Etry with Microwave Digestion
下载PDF
导出
摘要 建立微波消解-电感耦合等离子质谱(ICP—MS)法,检测食品中的汞。不同食品中的汞经微波消解、电感耦合等离子体质谱测定,采用购于国家标准物质中心的标准品进行加标回收试验,验证该方法的准确度和精密度。结果表明,该方法的回收率为77.6%-91.8%,相对标准偏差小于5%,灵敏度、准确度和精密度均符合相关的技术要求,方法检出限为0.00368μg,L。试验表明,该方法快速、准确、灵敏度高,可用于食品中痕量汞的测定。 A method is established for detemination of mercury in foods by inductively coupled plasma-mass spectram etry with microwave digestion. Mercury in different food are digested with microwave digestion system and measured with inductively coupled plasma mass spectrametry method. By purchasing in the center of the national standards of material standard standard addition recovery test verifies the accuracy and precision of method. Results show that the recoveries ranged from 77.6% ~ 91.8% and relative stand deviation (RSD) is less than 5%. The sensitivity accuracy and precision of the method comply with the technical standards of the determination. The limits of quantitation is 0.003 68 I.Lg/L. The developed method is rapid, sensitive and accurate. The method can be applied to the trace determination of mercury in foods.
作者 刘慧 钱强
出处 《农产品加工(下)》 2016年第6期55-56,60,共3页 Farm Products Processing
关键词 电感耦合等离子体质谱 微波消解 inductively coupled plasma-mass spectram microwave digestion mercury
  • 相关文献

参考文献7

二级参考文献39

  • 1刘庆惠,陈远盘.化学富集XRFA法测定岩石、土壤中稀有和稀土元素[J].光谱学与光谱分析,1995,15(6):99-105. 被引量:7
  • 2马红梅,朱志良,张荣华,赵建夫.弱碱性阴离子交换树脂富集ICP-AES测定环境水体中Cr(Ⅵ)和有机态Cr(Ⅲ)的研究[J].光谱学与光谱分析,2007,27(1):165-168. 被引量:8
  • 3罗少林,张英杰,范云鹰.分光光度法测定电镀液中的稀土元素含量[J].表面技术,2007,36(1):90-91. 被引量:3
  • 4梁旭霞,杜达安,梁春穗,连晓文,许瑛华,朱杰民,胡曙光,李海,李敏.ICP-MS同时测定植物性食物中15种稀土元素[J].华南预防医学,2007,33(3):12-15. 被引量:33
  • 5Satyanarayana K, Durani S, Ramanaiah G V. Determination of scandium in geological materials, rare earth minerals and niobate/tantalate-type of samples by inductively coupled plasma atomic emission spectrometry after solvent extraction/acid hydrolysis separation [J].Analytica Chimica Acta, 1998, 376: 273-281.
  • 6Zhang X Q, Liu J L, Yi Y. Determination of rare earth impurities in high purity samarium oxide using inductively coupled plasma mass spectrometry after extraetion chromatographic separation [J]. International Journal of Mass Spectrometry, 2007,260: 57- 66.
  • 7Gonzalez C H, Cabezas A J Q, Diaz M F. Preconcentration and determination of rare-earth elements in iron-rich water samples by extraction chromatography and plasma source mass spectrometry (ICP-MS) [J]. Talanta, 2005, 68: 47-53.
  • 8Yang X J, Gu Z M, Fane A G. Multicomponent separation by a combined extraction/electrostatic pseudo- liquid membrane (Ⅱ): extraction and group separation of rare earths from simulated rare earth ore leach solutions[J]. Hydrometallurgy, 1999, 53:19-29.
  • 9Pasinli T, Eroglu A E, Shahwan T. Preconcentration and atomic spectrometric determination of rare earth elements (REEs) in natural water samples by inductively coupled plasma atomic emission spectrometry [J]. Analytica Chimica Acta, 2005, 547: 42-49.
  • 10Wang Z H, Yan X P, Wang Z P. Flow injection online solid phase extraction coupled with inductively coupled plasma mass spectrometry for determination of (ultra)trace rare earth elements in environmental materials using maleic acid grafted polytetrafluoroethylene fibers as sorbent[J].J Am Soc Mass Spectrom, 2006, 17: 1258-1264.

共引文献136

同被引文献153

引证文献19

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部