期刊文献+

优化粒子群的云计算任务调度算法 被引量:5

Task Scheduling Algorithm of Cloud Computing Based on Particle Swarm Optimization
下载PDF
导出
摘要 任务调度作为云计算的关键技术之一,却一直没有得到很好的解决。针对云任务调度的特点,基于基本粒子群优化(PSO)算法,文中提出了一种带极值扰动的相关性粒子群优化(EDCPSO)算法。该算法采用Copula函数去刻画随机因子间的相关结构,支持粒子合理利用自身经验信息和群体共享信息,解决了粒子群优化算法在寻优过程中没有考虑随机因子作用而造成全局优化能力不足的缺陷;采用添加极值扰动算子的策略,进一步改进粒子群优化算法,避免了粒子群优化算法在进化后期容易陷入局部寻优现象。仿真结果表明,在相同条件下,带极值扰动的相关性粒子群优化算法优于基本粒子群优化算法和Cloudsim原有调度算法,任务总的完成时间明显减少。 Howto schedule cloud tasks efficiently is one of the important issues to be resolved in cloud computing. The Extremum Disturbed Correlative Particle Swarm Optimization( EDCPSO) algorithm based on basic Particle Swarm Optimization( PSO) is proposed for the characteristics of cloud environment. It uses the Copular function to measure correlation structures among random factors,support of particles properly using the individual experience and social sharing information,resolving the demerit that the PSO algorithm lacks of the global optimization ability because of not considering the function of the random factors in the optimization process. Moreover,it uses the strategy of adding extremum disturbed arithmetic operators to improve further the PSO,which resolves the demerit of falling into local extremum in the late evolution for PSO. Simulation shows that EDCPSO is better than PSO and Cloudsim original scheduling algorithm in the same experiment conditions. That is to say,the algorithm can reduce the total completion time of tasks.
出处 《计算机技术与发展》 2016年第7期6-10,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(6127036) 上海第二工业大学重点学科(XXKZD1301)
关键词 任务调度 云计算 粒子群优化 相关性 极值扰动 task scheduling cloud computing PSO correlation disturbed extremum
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R C, Shi Y. Swarm intelligence [ M ]. Singapore : Elsevier Science Press ,2001:202-210.
  • 2Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization [ J ]. Natural Computing ,2002,1 ( 2-3 ) :235-306.
  • 3Ratnaweera A,Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients [ J ]. IEEE Transactions on Evolutionary Computation,2010,8 ( 3 ) : 240 - 255.
  • 4Arumugam M S,Rao M V C,Tan A W C. A novel and effective particle swarm optimization like algorithm with extrapolation technique [ J ]. Applied Soft Computing, 2009,9 ( 1 ) : 308- 320.
  • 5介婧,曾建潮,韩崇昭.基于群体多样性反馈控制的自组织微粒群算法[J].计算机研究与发展,2008,45(3):464-471. 被引量:25
  • 6Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization[ C ]//Proc of the congress on evolutionary computation. Piscataway : IEEE, 2001 : 101 - 106.
  • 7Angeline P J. Evolutionary optimization versus particle swarm optimization:philosophy and performance differences [ C ]// Proc of the 7th annual conference on evolutionary programming. Berlin : Springer-Verlag, 1998:601-610.
  • 8Embrechts P, Mcneil A J, Straumann D. Correlation and dependency in risk management: properties and pitfalls [ C ]// Proc of the risk management:value at risk and beyond. Cambridge : Cambridge University Press ,2001 : 176-223.
  • 9Nelsen R B. An introduction to copulas [ M ]. 2nd ed. New York : Springer-Verlag,2006 : 10-28.
  • 10申元霞,王国胤,曾传华.相关性粒子群优化模型[J].软件学报,2011,22(4):695-708. 被引量:21

二级参考文献22

  • 1曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 4J Kennedy, R C Eberhart. Particle swarm optimization [C]. IEEE Conf on Neural Networks, Perth, Australia, 1995.
  • 5F V D Bergh. An analysis of particle swarm optimizers: [Ph D dissertation] [D]. Pretoria, South Atrica: Department of Computer Science, University of Pretoria, 2001.
  • 6C A C Coello, G T Pulido, M S Lechuga. Handling multiple objectives with particle swarm optimization [J ]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 7M P Wachowiak, R Smolikova, Y F Zheng, et al. An approach to multimodal biomedical image registration utilizing particle swarm optimization [J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 289-301.
  • 8Y Shi, R C Eberhart. Empirical study of particle swarm optimization [C]. The Congress on Evolutionary Computation. Washington, 1999.
  • 9R C Eberhart, Y Shi. Tracking and optimizing dynamic systems with particle swarms [C], The Congress on Evolutionary Computation. Seoul, Kores, 2001.
  • 10Y Shi, R C Eberhart. Fuzzy adaptive particle swarm optimization [C]. The Congress on Evolutionary Computation. Seoul, Korea, 2001.

共引文献783

同被引文献27

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部