期刊文献+

宫颈细胞图像的特征提取与识别研究 被引量:3

Research on Cervical Cell Image Feature Extraction and Recognition
下载PDF
导出
摘要 宫颈涂片的检查是诊断宫颈癌的最有效手段之一,而传统的宫颈细胞识别系统存在很大的局限,例如假阴性率和假阳性率过高。本文为了提高宫颈细胞涂片诊断的效率和准确率,首先提取宫颈细胞的形态特征和极径灰度中值,然后采用AdaBoost-SVM多特征融合分类器进行分类。实验研究结果表明:通过特征提取方法与AdaBoost-SVM多特征融合分类器结合,明显提高了宫颈细胞涂片筛查的效率和准确率,降低了宫颈癌的误诊率。 Cervical smear examination is one of the most effective means of diagnosis of cervical cancer, while the traditional cervical cell recognition system has significant limitations, with low false-negative and false-positive rates. Firstly, morphological characteristics and the gray values of pole in cervical cells are extracted. Then AdaBoost-SVM feature fusion classifier is used to classify the cervical cells in order to improve the efficiency and accuracy of diagnosis of cervical smears. The research results show that the combination of extraction method and multi-feature fusion AdaBoost-SVM classifier can significantly improve the efficiency and accuracy of cervical smear screening, and can reducethe misdiagnosis rate of cervical cancer.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2016年第2期61-66,共6页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(21327007) 广西研究生教育创新计划项目(YCSZ2015101)
关键词 极径 灰度中值 支持向量机 ADABOOST AdaBoost-SVM分类器 polar radius gray median in value support vector machine AdaBoost AdaBoost-SVM classifier
  • 相关文献

参考文献11

  • 1FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer in cidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 EJ/OL~. International Journal of Cancer, 2015, 136 (5): E359- E386. http: / / onlinelibary, wiley.com/ doi/10.l OO2 / ijc.29 210 / abstract.
  • 2JENSEN B. Neuro-Fuzzy Classification of Cells in Cervical Smears [D~. Denmark: Technical University of Denmark, 1999.
  • 3NIKOLAOS A, GEORGE D, JAN J. Pap-Smear classification using efficient second order neural network training algorithmsEM~//GEORGE A V, THEMISTOKLIS P. Methods and Applications of Aritificial Intelligence: Berlin Heidelberg: Springer Verlag 2004 : 230-245.
  • 4YANNIS M, GEORGIOS D, JAN J. Pap smear diagnosis using a hybrid intelligent scheme focusing on genetic algorithm based feature selection and nearest neighbor classification[J~. Computers in Biology and Medicine,2009, 39 (I) :69-78.
  • 5CHEN Yungfu, HUANG Pochi, Lin Kercheng, et al. Semi-Automatic segmentation and classification of pap smear cellsEJ3. IEE Journal of Biomedical and health informatics, 2014, 18 (1) : 94-108.
  • 6张晓龙,任芳.支持向量机与AdaBoost的结合算法研究[J].计算机应用研究,2009,26(1):77-78. 被引量:20
  • 7WANG Ruihu. AdaBoost for feature selection, classification and its relation with SVM, A Review[J]. Physics Procedia, 2012,25 : 800-807.
  • 8ABID S, VINOD S, RAJEEV G, Hybrid ensemble learning technique for screening of cervical cancer using Papanicolaou smear image analysis[J~. Personalized Medicine Universe, 2015, 4:54-62.
  • 9NORUP J. Classification of pap-smear data by transductive neuro-fuzzy methods[D~. Denmark: Technical University of Denmark, 2005.
  • 10CHANKONG T, THEERA-UMPON N, AUEPHANWIRIYAKUL S. Automatic cervical cell segmentation and classification in Pap smearsl-J]. Computer Methods and Programs in Biomedicine,2014, 113(2):539-556.

二级参考文献9

  • 1王晓丹,孙东延,郑春颖,张宏达,赵学军.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版),2006,7(6):54-57. 被引量:22
  • 2VAPNIK V N. The nature of statical learning theory [ M ]. London: Springer-Verlag, 1995.
  • 3VAPNIK V N. Principles of risk minimization for learning theory[ C]// Advances in Neural Information Processing Systems 4. San Francisco: Morgan Kaufmann Publishers, 1992 : 831 - 838.
  • 4FREUND Y, SCHAPIRE R E. A decision-theretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997,55( 1 ) : 119-139.
  • 5DUDA R O,HART P E.模式分类[M].李宏东,等译.北京:电子工业出版社.2001.
  • 6CHANG C C, LIN C J. LIB SVM:a library for support vector machines[ EB/OL]. (2002-03-10). http://www. csie. ntu. edu. tw/-cjlin/papers/guide/guide. pdf.
  • 7LIN C J. LIBSVM [ EB/OL ]. (2003-06-23). http ://www. csie. ntu. edu. tw/- cjlin/.
  • 8CHEN P H, FAN Rong-en, LIN C J. A study on SMO-type decomposition methods for support vector machine[ J]. IEEE Trans on Neural Networks, 2006,17 ( 4 ) : 893- 908.
  • 9Machine learning repository [ EB/OL ]. ( 2002-04-13 ). http ://archive. ics. uci. edu/ml/.

共引文献19

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部