期刊文献+

层间叉排微针肋液体冷却3D-IC流动及换热特性 被引量:1

Flow and heat transfer characteristics for inter-layer liquid cooling of 3D-IC with staggered micro-pin fins
原文传递
导出
摘要 用数值模拟的方法,研究了散热面积为1cm^2带有层间微散热结构双面均热发热3D-IC内部流体层流流动与换热,对体积流量在36~290mL/min范围内,通道高度为200μm,通道间距为200μm的带有矩形微通道和叉排微针肋液体冷却3D-IC(three-dimensional integration circuit)的流动与换热进行了分析.结果表明:带有层间叉排微针肋液体冷却3D-IC具有良好的换热效果,在热流密度为1.25MW/m^2,体积流量为290mL/min时,其发热面平均温度、最大温度只有318.31,323.16K,分别最大减小了12.31,20.14K,此时的功率为250W、体积热源为8.3kW/cm^3. The laminar flow and heat transfer characteristics of fluid were numerically investigated through uniform and double-side heat flux 3D-IC(three-dimensional integration circuit)with interlayer heat-removal structure for heat transfer areas of 1cm^2 and volume flow ringing from 36mL/min to 290mL/min.3D-IC with rectangle micro-channels and staggered micro-pin fins for pitches of 200μm and structure heights of 200μm was analyzed.Results show that inter-layer liquid cooling of 3D-IC with staggered micro-pin fins has better heat exchange effect than that with rectangle micro-channels.For the heat flux density of1.25MW/m^2,the average temperature and maximum temperature of the heating surface are only 318.31,323.16 K,decreased 12.31,20.14 Kthan that with rectangle micro-channels at the volume flow of 290mL/min,corresponding to about total power of 250 Wand volume heat source of 8.3kW/cm^3.
出处 《航空动力学报》 EI CAS CSCD 北大核心 2016年第6期1327-1334,共8页 Journal of Aerospace Power
基金 北京市自然科学基金(3142004)
关键词 三维集成电路 层间液体冷却 强化换热 对流 微针肋 three-dimensional integration circuit(3D-IC) inter-layer liquid cooling heat transfer enhancement convection micro-pin fin
  • 相关文献

参考文献16

  • 1Brunschwiler T, Michel B. Thermal management of verti- cally integrated packages[J]. Handbook of 3D lntegration: Technology and Applications of 3D Integrated Circuits, 2008,25 : 635-649.
  • 2Im S,Banerjee K. Full chip thermal analysis of planar (2- D) and vertically integrated (3 D)high performance ICs [R]. San Francisco,CA:Electron Devices Meeting,2000.
  • 3Cong J, Wei J, Zhang Y. A thermal-driven floorplanning al gorithm for 3D ICs[R]. Los Angeles, CA: International Conference on IEEE/Association for Computing Machiner y (ACM),2004.
  • 4Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. Electron Device Letters, 1981,2 (5) : 126-129.
  • 5Hasan M I, Rageb A A, Yaghoubi M, et al. Influence of channel geometry on the performance of a counter flow mi- crochannel heat exchanger [J]. International Journal of Thermal Sciences,2009,48(8) :1607-1618.
  • 6Liu Y,Cui J,Jang Y X,et al. A numerical study on heat transfer performance of microchannels with different sur- face mierostructures[J]. Applied Thermal Engineering, 2011,31(5) ;921-931.
  • 7Xia G D,Cai L,Zhou M Z. Effects of structural parameters on fluid flow and heat transfer in a microchannel with a- ligned fan-shaped reentrant cavities[J]. International Jour- nal of Thermal Sciences,2011,50(3):411-419.
  • 8Pehlivan H, Taymaz I,Islamolu Y. Experimental study offorced convective heat transfer in a different arranged cor rugated channel[J]. International Communications in Heat and Mass Transfer,2013,46 : 106-111.
  • 9Melamed S, Thorolfsson T, Srinivasan A, et al. Junction- level thermal extraction and simulation of 3DICs[R]. San Francisco, CA : International Conference on 3 D System In- tegration, 2009.
  • 10Linderman R J, Brunschwiler T, Kloter U, et al. Hierarchi- cal nested surface channels for reduced particle stacking and low-resistance thermal interfaces[R]. San Jose, CA: Semiconductor Thermal Measurement and Management Symposium, 2007.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部