期刊文献+

最小最大概率回归机在短期风电功率预测中的应用

Application of the Minimax Probability Machine Regression in Short-term Wind Power Forecasting
下载PDF
导出
摘要 为了对短期风电功率的预测进行研究,提出了一种基于最大最小概率回归机(MPMR)的预测方法。MPMR方法是将最小最大概率分类机(MPMC)向回归问题的应用推广。该方法仅须假定产生预测模型的数据分布均值与协方差矩阵已知,即能够最大化模型的预测输出位于其真实值边界内的最小概率。验证试验表明,MPMR方法能更好地跟踪风电功率的变化,有效地提高风电功率的预测精度,具有很好的应用前景。 In order to research the forecasting of short - term power of wind generation, the forecasting method based on minimax probability machine regression ( MPMR ) is proposed,in which the minimax probability machine classification (MPMC) is extended to be used in promotion of regression. Only by presuming the mean and covariance matrix of data distribution that produces the forecasting model is known, the minimum probability for obtaining forecasting output of the model within the boundary of true value can be maximized. The verifying experiments indicate that the MPMR method can well track the variation of the power of wind generation and effectively enhance the forecasting accuracy, so it possesses good applicable potential.
出处 《自动化仪表》 CAS 2016年第7期30-33,共4页 Process Automation Instrumentation
基金 甘肃广播电视大学科研基金资助项目(编号:2014-ZD-01)
关键词 最大最小概率回归机 最小最大概率分类机 卡尔曼滤波法 支持向量机 人工智能 功率预测 风电 Minimax probability machine regression Minimax probability machine classification Calman filter method Support vector machine(SVM) Artificial intelligence Application potential Pecoer predictim wind power
  • 相关文献

参考文献12

  • 1WANG X C, GUO P, HUANG X B. A review of wind power forecasting model [ J ]. Energy Procedia,2011 ( 12 ) :770 - 778.
  • 2FOLEY A M ,LEAI'tY P G ,MARVUGLIA A,et,al. Current methods and advances in forecasting of wind power generation [ J ]. Renewable Energy,2012,37 ( 1 ) : 1 - 8.
  • 3BOSSANYI E A. Short - term wind prediction using Kalman filters [ J ]. Wind Engineering, 1985,9 ( 11 ) : 1 - 8.
  • 4KAMAL L,JAFRI Y Z. Time series models to simulate and forecast hourly averaged wind speed in Wuetta, Pakistan[ J]. Solar Energy, 1997,61(1) : 23 -32.
  • 5凌武能,杭乃善,李如琦.基于云支持向量机模型的短期风电功率预测[J].电力自动化设备,2013,33(7):34-38. 被引量:45
  • 6范高锋,王伟胜,刘纯,戴慧珠.基于人工神经网络的风电功率预测[J].中国电机工程学报,2008,28(34):118-123. 被引量:360
  • 7LANCKRIET G, GHAOUI L, BHATTACHARYYA C, et al. Minimax probability machine [ C]//Proceeding of 14th Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2002: 801 - 807.
  • 8STROHMANN T,GRUDIC C. A Formulation for Minimax Probability Machine Regression [ C ]//Proceedings of 15th Advances in Neural Information Processing Systems, Cambridge: MIT Press, 2003: 769 - 776.
  • 9刘遵雄,刘建辉.基于最小最大概率回归的混沌时间序列全局预测[J].华东交通大学学报,2007,24(1):145-148. 被引量:1
  • 10CHENG Q H, LIU Z X. Chaotic load series forecasting based on MPMR [ C ]//Machine Learning and Cybernetics,2006 International Conference on IEEE,2006 : 2868 -2871.

二级参考文献57

共引文献399

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部