摘要
为了对短期风电功率的预测进行研究,提出了一种基于最大最小概率回归机(MPMR)的预测方法。MPMR方法是将最小最大概率分类机(MPMC)向回归问题的应用推广。该方法仅须假定产生预测模型的数据分布均值与协方差矩阵已知,即能够最大化模型的预测输出位于其真实值边界内的最小概率。验证试验表明,MPMR方法能更好地跟踪风电功率的变化,有效地提高风电功率的预测精度,具有很好的应用前景。
In order to research the forecasting of short - term power of wind generation, the forecasting method based on minimax probability machine regression ( MPMR ) is proposed,in which the minimax probability machine classification (MPMC) is extended to be used in promotion of regression. Only by presuming the mean and covariance matrix of data distribution that produces the forecasting model is known, the minimum probability for obtaining forecasting output of the model within the boundary of true value can be maximized. The verifying experiments indicate that the MPMR method can well track the variation of the power of wind generation and effectively enhance the forecasting accuracy, so it possesses good applicable potential.
出处
《自动化仪表》
CAS
2016年第7期30-33,共4页
Process Automation Instrumentation
基金
甘肃广播电视大学科研基金资助项目(编号:2014-ZD-01)
关键词
最大最小概率回归机
最小最大概率分类机
卡尔曼滤波法
支持向量机
人工智能
功率预测
风电
Minimax probability machine regression Minimax probability machine classification Calman filter method Support vector machine(SVM) Artificial intelligence Application potential Pecoer predictim wind power