摘要
在非线性项具有超线性增长条件下,研究了拟线性椭圆型方程的共振问题.通过建立拟线性算子与线性算子的一种关系,依据Shapiro在加权Sobolev空间中建立的紧嵌入定理和推广的Brouwer定理,运用截断方法证明了近似方程的解存在;借助Sobolev理论、Fatou引理和Lebesgue控制收敛定理证明了上述近似解一致有界;利用投影技巧和Galerkin方法得到共振问题的非平凡解的存在性.
The resonance problem of a quasilinear elliptic equation with superlinear nonlinearities were focused.By establishing the relationship between the quasilinear operators and linear operators,according to the Shapiro-type compact embedding theorem and Brouwer's theorem,the existence of solutions of the approximate equation was revealed.With the help of the Sobolev theory,Fatou's Lemma and Lebesgue dominated convergence theorem,the uniform boundness of the approximate solutions was proved.By using the projection technique and the Galerkin method,the existence of nontrivial solutions of the resonance problem was revealed.
出处
《上海理工大学学报》
CAS
北大核心
2016年第3期205-210,262,共7页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(11171220)
沪江基金资助项目(B14005)