期刊文献+

具超线性增长非线性项的拟线性椭圆型方程共振问题 被引量:1

Resonance Problem of a Quasilinear Elliptic Quation with Superlinear Nonlinearities
下载PDF
导出
摘要 在非线性项具有超线性增长条件下,研究了拟线性椭圆型方程的共振问题.通过建立拟线性算子与线性算子的一种关系,依据Shapiro在加权Sobolev空间中建立的紧嵌入定理和推广的Brouwer定理,运用截断方法证明了近似方程的解存在;借助Sobolev理论、Fatou引理和Lebesgue控制收敛定理证明了上述近似解一致有界;利用投影技巧和Galerkin方法得到共振问题的非平凡解的存在性. The resonance problem of a quasilinear elliptic equation with superlinear nonlinearities were focused.By establishing the relationship between the quasilinear operators and linear operators,according to the Shapiro-type compact embedding theorem and Brouwer's theorem,the existence of solutions of the approximate equation was revealed.With the help of the Sobolev theory,Fatou's Lemma and Lebesgue dominated convergence theorem,the uniform boundness of the approximate solutions was proved.By using the projection technique and the Galerkin method,the existence of nontrivial solutions of the resonance problem was revealed.
出处 《上海理工大学学报》 CAS 北大核心 2016年第3期205-210,262,共7页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11171220) 沪江基金资助项目(B14005)
关键词 加权SOBOLEV空间 拟线性椭圆型方程 超线性增长 weighted Sobolev space quasilinear elliptic equation superlinear growth
  • 相关文献

参考文献11

  • 1SHAPIRO V L. Quasilinearity below the 1st eigenvalue [J]. Proceedings of the American Mathematical Society, 2001,129(7) .. 1955 - 1962.
  • 2RUMBOS A J, SHAPIRO V L. Jumping nonlinearities and weighted Sobolev spaces [ J ]. Journal of Differential Equations, 2005,214 (2) .. 326 - 357.
  • 3RUMBOSA. A semilinear elliptic boundary value problem at resonance where the nonlinearity may grow linearly[J]. Nonlinear Analysis.. Theory, Methods & Applications, 1991,16(12) .. 1159 - 1168.
  • 4LEFI'ON L E, SHAPIRO V L. Resonance and quasilinear parabolic partial differential equations[J]. Journal of Differential Equations, 1993,101 (1) .. 148 - 177.
  • 5SHAPIRO V L. Resonance, distributions and semilinear elliptic partial differential equations [ J ]. Nonlinear Analysis Theory, Methods & Applications, 1984,8 (8) 857 - 871.
  • 6赵美玲,贾高.加权Sobolev空间中奇异拟线性椭圆方程共振问题[J].上海理工大学学报,2012,34(6):598-603. 被引量:2
  • 7JIA G, SUN D. Existence of solutions for a class of singular quasilinear elliptic resonance problems [J]. Nonlinear Analysis: Theory, Methods & Applications, 2011,74(10) :3055 - 3064.
  • 8SHAPIRO V L. Special functions and singular quasilinear partial differential equations [J]. SIAM Journal on Mathematical Analysis, 1991,22(5) : 1411 - 1429.
  • 9SHAPIRO V L. Singular quasilinearity and higher eigenvalues[M]. Rhode Island: American Mathematical Society, 2001.
  • 10KESAVAN S. Topics in functional analysis and applications[M]. New York: John Wiley & Sons, 1989.

二级参考文献13

  • 1陆文端.微分方程中的变分法[M].北京:科学出版社,2003.
  • 2Alois K. Weighted Sobolev spaces [M]. New York.. John Wiley & Sons, 1985.
  • 3Shapiro V L. Singular quasilinearity and higher eigenvalues [M]. Providence.. American Mathematical Society, 2001.
  • 4Rumbos A, Shapiro V L. Jumping nonlinearities and weighted Sobolev spaces [J]. Journal of Differential Equations,2005,214 (2) :326 - 357.
  • 5Shapiro V L. Resonance, distributions and semilinear elliptic partial differential equations[J].Nonlinear Analysis, Theory, Methods & Applications, 1984,8 (3) 857 - 871.
  • 6Shapiro V L. Special functions and singular quasilinear partial differential equations [J]. Society for Industrial and Applied Mathematics, 1991,22(5) :1411 - 1429.
  • 7Jia G, Sun D. Existence of solutions for a class of singular quasilinear ell-iptic resonance problems [J]. Nonlinear Analysis,2011,74(10) :3055 - 3064.
  • 8Jia G, Zhao Q. Existence results in weighted Sobolev spaces for some singular quasilinear elliptic equations [J]. Acta Appl Math, 2010,109 (2):599 - 607.
  • 9Kesavan S. Topics in functional analysis and applications [M]. New York.. John Wiley & Sons, 1989.
  • 10宣本金.变分法:理论与应用[M].合肥:中国科技大学出版社,2006.

共引文献1

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部