期刊文献+

一维向列相液晶模型方程孤立波解的存在性

Existence of Solitary Wave Solutions for One-dimensional Nematic Liquid Crystals Model Equations
下载PDF
导出
摘要 在证明W^(1,2)(-∞,+∞)空间中向列相液晶模型方程孤立波解的存在性的过程中,关键是要证明相关的泛函是紧性的.因此,首先可根据临界点理论中的集中紧性原理的方法,证明二分性以及消失性不成立,即在W^(1,2)(-∞,+∞)空间中泛函的极小化序列的紧性是成立的,进一步利用极值原理的方法,得到一维向列相液晶模型方程孤立波解的存在性. In the process of proving the existence of solitary wave solutions for one-dimensional nematic liquid crystal model equations in W^(1,2)(- ∞,+ ∞),the key point is to prove that the relevant functional is compact.Therefore,firstly,using the method of concentrated-compactness principle in the critical points theory,two bad cases:dichotomy and vanishing were eliminated,and prove the compactness of the minimizing sequences was proved.Then,the existence of solitary wave solutions for one-dimensional nematic liquid crystal model equations was obtained by using the extremum principle.
出处 《上海理工大学学报》 CAS 北大核心 2016年第3期218-222,共5页 Journal of University of Shanghai For Science and Technology
基金 上海市自然科学基金资助项目(15ZR1429500) 沪江基金资助项目(B14005)
关键词 向列相液晶模型方程组 能量极小孤立波解 存在性 nematic liquid crystals model equations energy minimizing solitary wave solution existence
  • 相关文献

参考文献12

  • 1ASSANTO G, PECCIANTI M, CONTI C. Nematiconsoptical spatial solitons in nematic liquid crystals[J]. Optics and Photonics News, 2003,14 (2) .. 44 - 48.
  • 2HENNINOT J F, BLACH J F, WARENGHEM M. Experimental study of the nonlocality of spatial optical solitons excited in nematic liquid crystal[J]. Journal of Optics A.. Pure and Applied Optics, 2007, 9 (1).. 20 - 25.
  • 3ASSANTO G, MINZONI A A, PECCIANTI M, et al. Optical solitary waves escaping a wide trapping potential in nematic liquid crystals., modulation theory [J]. Physical Review A, 2009,79 (3) :033837.
  • 4ALBERUCCI A, PICCARDI A, PECCIANTI M, et al. Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity[J]. Physical Review A, 2010,82(2) .. 023806.
  • 5CONTI C, PECCIANTI M, ASSANTO G. Route to nonlocality and observation of accessible solitons[J]. Physical Review Letters, 2003,91(7) .. 073901.
  • 6PECCIANTI M,ASSANTO G. Nematicons[J]. Physics Reports, 2012,516(4/5) : 147 - 208.
  • 7PANAYOTAROS P, MARCHANT T R. Solitary waves in nematic liquid crystals [J]. Physica D.. Nonlinear Phenomena, 2014,268:106 - 117.
  • 8BELLAZZINI J, SICILIANO G. Stable standing waves for a class of nonlinear Schr6dinger-Poisson equations [J]. Zeitschrift fiir Angewandte Mathematik und Physik, 2011,62 (2) : 267 - 280.
  • 9GEORGIEV V, PRINARI F, VISCIGLIA N. On the radiality of constrained minimizers to the Schr6dinger- Poisson-Slater energy[J]. Annales de L' Institut Henri Poincare (C) Non Linear Analysis, 2012, 29 ( 3 ) : 369 - 376.
  • 10CHOQUARDP, STUBBE J. The one-dimensional Schr6dinger-Newton equations [ J ]. Letters in Mathematical Physics, 2007,81(2) .. 177 - 184.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部