摘要
在证明W^(1,2)(-∞,+∞)空间中向列相液晶模型方程孤立波解的存在性的过程中,关键是要证明相关的泛函是紧性的.因此,首先可根据临界点理论中的集中紧性原理的方法,证明二分性以及消失性不成立,即在W^(1,2)(-∞,+∞)空间中泛函的极小化序列的紧性是成立的,进一步利用极值原理的方法,得到一维向列相液晶模型方程孤立波解的存在性.
In the process of proving the existence of solitary wave solutions for one-dimensional nematic liquid crystal model equations in W^(1,2)(- ∞,+ ∞),the key point is to prove that the relevant functional is compact.Therefore,firstly,using the method of concentrated-compactness principle in the critical points theory,two bad cases:dichotomy and vanishing were eliminated,and prove the compactness of the minimizing sequences was proved.Then,the existence of solitary wave solutions for one-dimensional nematic liquid crystal model equations was obtained by using the extremum principle.
出处
《上海理工大学学报》
CAS
北大核心
2016年第3期218-222,共5页
Journal of University of Shanghai For Science and Technology
基金
上海市自然科学基金资助项目(15ZR1429500)
沪江基金资助项目(B14005)
关键词
向列相液晶模型方程组
能量极小孤立波解
存在性
nematic liquid crystals model equations
energy minimizing solitary wave solution
existence