期刊文献+

黄铜矿精矿中等嗜热微生物浸出过程及其优化 被引量:5

Bioleaching of chalcopyrite concentrate with moderate thermophilic bacteria and its optimization
下载PDF
导出
摘要 采用3种中等嗜热微生物:喜温硫杆菌(Acidithiobacillus caldus,A.c)、嗜铁钩端螺旋菌(Leptospirillum ferriphilu,L.f)、嗜热氧化硫化杆菌(Sulfobacillus thermosulfidooxidans,S.t)对黄铜矿精矿进行浸出。探讨浸出过程中的微生物生长优化及搅拌反应器浸出条件优化。微生物最佳生长条件如下:生长温度为45℃、初始p H为1.5。驯化过的浸矿细菌的生长及浸出率明显高于未驯化的,驯化后浸出率在矿浆浓度为50 g/L时达到最大,为94.00%;当矿浆浓度达到100 g/L时,铜的浸出率稳定在80%左右。搅拌反应器的最优化浸出条件如下:搅拌速度350 r/min,充气强度500 m L/min。在此条件下,对黄铜矿精矿进行浸出,浸出时间为30 d时,最终铜离子浓度为17.36 g/L,铜的浸出率为85.60%。 The bioleaching of chalcopyrite concentrate in the presence ofthreedifferent moderate thermophilic bacteria such asAcidithiobacillus caldus(A.c),Leptospirillum ferriphilu(L.f) andSulfobacillusthermosulfidooxidans(S.t), including the optimal conditions of microbial growth and the optimization of stirred reactor during the bioleaching process, wasinvestigated. The resultsshow that the best growth conditions of bacteria areas follows,temperature of 45℃and initial pHof1.5.The microbial growth of the domesticated bacteria and the bioleaching rate using themare significantly higher thanthose of thenon-domesticated bacteria. The leaching rate usingthedomesticated strains reaches the maximum94.00%with the pulp density of 50 g/L. The leaching rate of copper stabilizesat about 80% when the pulp density reaches100 g/L. The optimal parametersof stirred reactors areas follows:stirring speed of 350 r/minand aeration intensity of 500 mL/min. The final concentration of copper ionsis17.36 g/L and the leaching rate of copperis 85.60% for the chalcopyrite bioleachingfor 30 d under these conditions.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2016年第5期1120-1128,共9页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金资助项目(51374248 51320105006) 教育部博士点新教师基金资助项目(20120162120010) 教育部新世纪人才计划项目(NCET-13-0595)~~
关键词 黄铜矿 中等嗜热菌 生物浸出 chalcopyrite moderate thermophilic bacteria bioleaching
  • 相关文献

参考文献49

  • 1DUTRIZAC J E. The kinetics of dissolution of chalcopyrite in ferric ion media[J]. Metallurgical Transactions B, 1978, 9(3): 431-439.
  • 2LI Y, KAWASHIMA N, LI J, CHANDRA A P, GERSON A R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite[J]. Advances in Colloid and Interface Science, 2013, 197: 1-32.
  • 3王晓冬,段东平,周娥,陈思明.硫化铜矿强化浸出研究进展[J].中国有色冶金,2014,43(4):38-41. 被引量:1
  • 4BRIERLEY C L, BRIERLEY J A. Progress in bioleaching: part B: Applications of microbial processes by the minerals industries[J]. Applied Microbiology and Biotechnology, 2013, 97(17): 7543-7552.
  • 5PANDA S, SANJAY K, SUKLA L B, PRADHAN N, SUBBAIAH T, MISHRA B K, PRASAD M S, RAY S K. Insights into heap bioleaching of low grade chalcopyrite ores: A pilot scale study[J]. Hydrometallurgy, 2012, 125: 157-165.
  • 6TSHILOMBO A F. Mechanism and kinetics of chaleopyrite passivation and depassivation during ferric and microbial leaching[D]. New York: University of British Columbia, 2004.
  • 7DUTRIZAC J. Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite[J]. Canadian Metallurgical Quarterly, 1989, 28(4): 337-344.
  • 8KLAUBER C, PARKER A, van BRONSWIJK W, WATLING H. Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy[J]. Intemational Joumal of Mineral Processing, 2001, 62(1): 65-94.
  • 9ZHAO Hong-bo, WANG Jun, QIN Wen-qing, HU Ming-hao, ZHU Shan, QIU Guang-zhou. Electrochemical dissolution process of chalcopyrite in the presence of mesophilic microorganisms[J]. Minerals Engineering, 2015, 71: 159-169.
  • 10YANG Yi, LIU Wei-hua, CHEN Miao. A copper and iron K-edge XANES study on chalcopyrite leached by mesophiles and moderate thermophiles[J]. Minerals Engineering, 2013, 48: 31-35.

二级参考文献249

共引文献81

同被引文献39

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部