期刊文献+

Cr-poisoning under open-circuit condition in LaNi_(0.6)Fe_(0.4)O_(3-δ)-based nano composite cathodes for solid oxide fuel cells prepared by infiltration process 被引量:1

熔渗法制备固体氧化燃料电池LaNi_(0.6)Fe_(0.4)O_(3-δ)基纳米复合阴极在开路条件下的铬中毒(英文)
下载PDF
导出
摘要 LaNi(0.6)Fe(0.4)O(3-δ) (LNF) powders were synthesized by the glycine-nitrate process and LNF-gadolinium-doped ceria (GDC) nanocomposite cathodes for solid oxide fuel cells (SOFCs) were fabricated by infiltration from LNF porous backbones. Electrochemical properties and Cr-poisoning behavior of LNF-GDC cathodes were studied. Single phase perovskite LNF could be obtained at the glycine to nitrate molar ratio of 1:1. The polarization resistance of the LNF-GDC nanocomposite cathode was significantly decreased in comparison with the LNF. This phenomenon was associated with enhanced catalytic activity and enlarged triple-phase boundary (TPB) length by GDC nano particles. In addition, the nanocomposite cathode showed good Cr tolerance under open circuit condition. The LNF-GDC nanocomposite cathodes were expected for use as a potential cathode in intermediate- temperature solid oxide fuel cells (IT-SOFC). 利用甘氨酸-硝酸盐方法合成LaNi_(0.6)Fe_(0.4)O_(3-δ)(LNF)粉末,采用LNF多孔主干熔渗法制备掺杂二氧化铈LNF-钆(GDC)固体氧化燃料电池纳米复合阴极。研究了LNF-GDC纳米复合阴极的电化学性能和铬中毒行为。当甘氨酸和硝酸盐的摩尔比为1:1时可得到单相钙钛矿LNF。与LNF相比,LNF-GDC纳米复合阴极的极化阻抗显著降低,这与增强的催化活性和增大的三相边界长度有关。另外,在开路条件下,纳米复合阴极有较好的铬容限。在中温固体氧化燃料电池中,LNF-GDC纳米复合阴极有望成为一种颇具潜力的阴极材料。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1367-1372,共6页 中国有色金属学报(英文版)
基金 supported by a grant from the Fundamental R&D Program for Core Technology of Materials (No.10051006)funded by the Ministry of Knowledge Economy, Republic of Korea supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20113020030050)
关键词 Cr-poisoning PEROVSKITE INFILTRATION solid oxide fuel cell LaNi0.6Fe0.4O3-δ 铬中毒 钙钛矿 熔渗 固体氧化燃料电池 LaNi0.6Fe0.4O3-δ
  • 相关文献

参考文献22

  • 1ATKINSON A, BARNETT S, GORTE R J, IRVINE J, MCEVOY A J MOGENSEN M, SINGHAL S C, VOHS J. Advanced anodes for high-temperature fuel cells [J]. Nature Materials, 2004, 3(1): 17-27.
  • 2FERGUS J W. Oxide anode materials for solid oxide fuel cells [J]. Solid State Ionics, 2006, 177(17): 1529-1541.
  • 3LUO Zhi-an, X1AO Jian-zhong, XIA Feng, YANG Yi-fan. Steadypolarization process modelling of noble metal-electrolyte cermet composite electrode [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(1): 142 147.
  • 4夏卫生,杨云珍,张海鸥,王桂兰.Fabrication and electrochemical performance of solid oxide fuel cell components by atmospheric and suspension plasma spray[J].中国有色金属学会会刊:英文版,2009,19(6):1539-1544. 被引量:3
  • 5HUIJSMANS J, van BERKEL F, CHRISTIE G. Intermediate temperature SOFC--A promise for the 21st century [J]. Journal of Power Sources, 1998, 71(1): 107-110.
  • 6JIANG S P, CHEN X. Chromium deposition and poisoning of cathodes of solid oxide fuel cells--A review [J]. International Journal of Hydrogen Energy, 2014, 39(1): 505-531.
  • 7TUCKER M C, KUROKAWA H, JACOBSON C P, de JONGHE L C, VISCO S J. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials [J]. Journal of Power Sources, 2006, 160(1): 130-138.
  • 8ZHEN Y, TOK A, JIANG S, BOEY F. La(Ni,Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells [J]. Journal of Power Sources, 2007, 170(1): 61-66.
  • 9JIANG Z, XIA C, CHEN F. Nano-stmctured composite cathodes for intermediate-temperature solid oxide fuel cells via infiltration/impregnation technique [J]. Electrochimica Acta, 2010, 55(11): 3595 3605.
  • 10JIANG S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges [J]. International Journal of Hydrogen Energy, 2012, 37(1): 449-470.

二级参考文献18

  • 1KWON O, KUMMAR S, PARK S, LEE C. Comparison of solid oxide fuel cell anode coatings prepared from different feedstock powders by atmospheric plasma spray method [J]. J Power Sources, 2007, 171(2): 441-447.
  • 2LIM D P, LIM D S, OH J S, LYO I W. Influence of post-treatments on the contact resistance of plasma-sprayed La0.8Sr0.2MnO3 coating on SOFC metallic interconnector [J]. Surf Coat Tech, 2005, 200(5/6): 1248-1251.
  • 3FAUCHAIS P, RAT V, DELBOS C, COUDERT J F, CHARTIER T, BIANCHI L. Understanding of suspension DC plasma spraying of finely structured coatings for SOFC [J]. IEEE T Plasma Sci, 2005, 33(2): 920-930.
  • 4FAUCHAIS P, ETCHART-SALAS R, DELBOS C, TOGNONVI M, RAT V, COUDERT J F, CHARTIER T. Suspension and solution plasma spraying of finely structured layers: Potential application to SOFCs [J]. J Phys D--Appl Phys, 2007, 40: 2394-2406.
  • 5FAUCHAIS P, ETCHART-SALAS R, RAT V, COUDERT J F, CARON N, WITTMANN-TENEZE K. Parameters controlling liquid plasma spraying: Solutions, sols, or suspensions [J]. J Therm Spray Tech, 2008, 17(1): 31-59.
  • 6KASSNER H, SIEGERT R, HATHIRAMANI D, VASSEN R, STOEVER D. Application of suspension plasma spraying (SPS) for manufacture of ceramic coatings [J]. J Therm Spray Tech, 2008, 17(1): 115-123.
  • 7LIU Shi-min, XING Chang-sheng, QIAN Xiao-liang. Synthesis of La0.8Sr0.2Co0.5Fe0.5O3 nanometer-size powders and its characterization [J]. Journal of Huazhong University of Science and Technology: Natural Science, 2005, 33(1): 81-83.
  • 8MARPLE VOYER J, BECHARD P. Sol infiltration and heat treatment of alumina-chromia plasma-sprayed coatings [J]. J Eur Ceram Soc, 2001, 21(7): 861-868.
  • 9AHMANIEMI S, VUORISTO P, MANTYLA, T. Improved sealing treatments for thick thermal barrier coatings [J]. Surf Coat Tech, 2002, 151/152: 412-417.
  • 10VIAZZI C, BONINO J P, ANSART F. Synthesis by sol-gel route and characterization of yttria stabilized zirconia coatings for thermal barrier applications [J]. Surf Coat Tech, 2006, 201(7): 3889-3893.

共引文献2

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部