期刊文献+

范畴内部算子中的开态射 被引量:1

Open morphisms in categorical interior operators
下载PDF
导出
摘要 给出范畴内部算子的一些结果,通过一般拓扑学中连续开映射的等价刻画,定义了范畴内部算子中的开态射,并研究了它们的性质.设Ω是一个范畴,ω是Ω上的一类单态射使得(ε,ω)是一个恰当的保持的分解系统.IN(Ω,ω),CL(Ω,ω)和NO(Ω,ω)分别记为范畴Ω相对应ω的范畴内部算子、范畴闭包算子和范畴邻域算子的全体.当满足一定条件和适当的序关系给IN(Ω,ω),CL(Ω,ω)和NO(Ω,ω),可以证明它们彼此是完备类之间的同构. Some results of categorical interior operators were first given here; then open morphisms in categorical interior operators were defined and their properties studied by using the equivalent characterization of continuous open mappings in general topology. Let D be a category and a fixed class ω of Ω-monomorphisms such that (ε, ω) is a proper stable factorization system. IN(Ω,ω), CL(Ω,ω) and NO(Ω,ω) denote the set of all categorical closure operators on Ω with respect to ω, the set of all categorical neighborhood operators on D with respect to co and the set of all categorical interior operators on Ω with respect to ω. When it satisfies some conditions and appropriate order relations can be defined on IN(Ω,ω), CL(Ω,ω) and NO(Ω,ω), it can be proven they are isomorphisms between complete classes.
作者 赵虎 李生刚
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期405-409,共5页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(11501435 61473181) 西安工程大学数学学科建设经费项目(107090701) 西安工程大学博士科研启动基金项目(BS1426)
关键词 因子分解系统 范畴内部算子 开态射 完备类 factorization system categorical interior operator open morphism complete class
  • 相关文献

参考文献11

  • 1赵虎,钟晓静,李生刚.L-fuzzy的邻域算子、内部算子以及闭包算子之间的相互确定[J].陕西师范大学学报(自然科学版),2010,38(3):16-19. 被引量:5
  • 2Zhao Hu, Li Sheng- gang, Chen Gui-xiu. (L, M)- fuzzytopological groups[J]. Journal of Intelligent and FuzzySystems, 2014, 26(3): 1517-1526.
  • 3Zhao Hu, Li Sheng-gang, Chen Gui-xiu. Further study on(L, M)-fuzzy topologies and (L, M)- fuzzy neighborhoodsystems [J]. Iranian Journal of Fuzzy Systems, 2014,11(3):109-123.
  • 4Dikranjan D, Tholen W. Categorical structure of closureoperators, with applications to topology, algebra anddiscrete mathematics[M]. Dordrecht: Kluwer AcademicPublishers, 1995.
  • 5Castellini G. Categorical closure operators[J]. Trends inMathematics, 2001,49(2): 109-150.
  • 6Vorster S J R. Interior operators in general categories[J].Quaestiones Mathematicae, 2000, 23(4): 405-416.
  • 7Castellini G. Interior operators in a category: idempoten-cy and heredity [J]. Topology and its Applications, 2011,158(17): 2332-2339.
  • 8Holgate D, Slapal J. Categorical neighborhood opera-torsfJ]. Topology and its Applications, 2011,158(17):2356-2365.
  • 9Gierz G,Hofmann K H,Keimel K, et al. Continuous lat-tices and domains[M]. New York: Cambridge UniversityPress, 2003.
  • 10Adamek J, Herrlich H, Stacker G E. Abstract and con-crete categories[M]. New York: The Joy of Cats, DoverPublications, 2009.

二级参考文献7

  • 1Shi Fugui. L-fuzzy interiors and L-fuzzy closures [J]. Fuzzy Sets and Systems, 2009, 160(9):1218-1232.
  • 2Zhang Dexue. On the relationship between several basic category in fuzzy topology [ J ]. Questions Mathematicae, 2002, 25(3):289-301.
  • 3Wang Guojun. Theory of topological molecular lattices [J]. Fuzzy Sets and Systems, 1992, 47(3) :351-376.
  • 4Fang Jingming. Categories isomorphic to L-FTOP[J]. Fuzzy Sets and Systems, 2006,157 ( 6 ) : 820-831.
  • 5Kim Y C. Initial L-fuzzy closure Spaces[J]. Fuzzy Sets and Systems, 2003, 133(3): 277-297.
  • 6Fang Jingming. I-FTOP is isomorphic to I-FIQN and IAITOP[J]. Fuzzy Sets and Systems, 2004, 147(2) : 317-325.
  • 7Lai Hongliang, Zhang Dexue. Fuzzy preorder and fuzzy topology[J]. Fuzzy Sets and Systems, 2006, 157(4): 1865-1885.

共引文献4

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部