期刊文献+

单层石墨烯多势垒结构中的输运及能谱特性

Transport properties and energy spectrum with multi-barriers in monolayer graphene
下载PDF
导出
摘要 利用传递矩阵的方法研究了单层石墨烯中势垒个数N=1、3、5、7、9、11时,等高方形势垒和对称的阶跃势垒结构中电子的隧穿几率和电导.通过周期性势垒中的能带结构对载流子隧穿特性进行分析.结果表明,在多势垒结构中,仍存在Klein隧穿效应.单层石墨烯的隧穿几率和电导依赖于势垒高度、势垒宽度、入射能量和入射角度,还受到势垒形状的影响.能带结构中显示有能级分布的区域表明势垒和势阱间载流子状态匹配,出现隧穿共振,在载流子隧穿谱中对应地体现.相应的在多势垒结构中,可以通过调节势垒结构参数来控制单层石墨烯的电导. With the transfer matrix method, the transmission coefficient and the conductance in monolayer graphene were investigated in the presence of the same height square-barrier structures and the symmetrical step-barrier structures with 1, 3, 5, 7, 9, 11 barriers respectively. The cartier tunneling properties could be analyzed through the energy band structure in the periodic barrier structure. The results indicated that Klein tunneling effect still existed in the multi-barrier structure systems. The transmission coefficient and the conductance depended on the barrier height, barrier width, incident energy, incident angle and barrier shape. The distribution area in the energy spectrum structure indicated the existing state matching well at the interface of barrier, which corresponded to the resonant tunneling. Accordingly, in the multi-barrier structure systems the conductance can be adjusted by the parameters of the barrier structure in monolayer graphene.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期417-421,428,共6页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(10804053) 江苏省自然科学基金项目(BK20131428) 江苏省高校"青蓝工程"项目 教育部留学回国人员科研启动基金项目
关键词 石墨烯 多势垒 隧穿 graphene multi-barrier tunneling
  • 相关文献

参考文献27

  • 1Novoselov K S,Geim A K,Morozov S V,et al. Electricfield effect in atomically thin carbon films[J]. Science,2004,306(5696): 666-669.
  • 2Castro N A H, Guine F, Peres N M R, et al. The electron-ic properties of graphene [J]. Rev Mod Phys, 2009, 81(1):109-162.
  • 3Novoselov K S,Geim A K, Morozov S V,et al. Two-dimen-sional gas of massless Dirac fermions in graphene[J].Nature,2005, 438(7065): 197-200.
  • 4施仲诚,房鸿.紧束缚近似方法在计算石墨烯能带中的应用[J].西安工业大学学报,2011,31(6):528-532. 被引量:3
  • 5Sprinkle M, Siegel D, Hu Y,et al. First direct observationof a nearly ideal graphene band structure[J]. Phys RevLett, 2009, 103(22): 226803.1-226803.6.
  • 6Zhang Yuan-bo,Tan Yan-wen, Stormer H L, et al. Experi-mental observation of the quantum Hall effect and Berrysphase in graphene[J]. Nature, 2005, 438(7065): 201-204.
  • 7Gusynin V P, Sharapov S G. Unconventional integerquantum Hall effect in graphene [J]. Phys Rev Lett, 2005,95(14): 146801.1-146801.7.
  • 8Mccann E, Fal'ko V I. Landau-level degeneracy and quan-tum hall effect in a graphite bilayer[J]. Phys Rev Lett,2006,96(8): 086805.1-086805.8.
  • 9Novoselov K S,Mccann E,Morozov S V, et al. Uncon-ventional quantum Hall effect and Berry's phase of 2n inbilayer graphene [J]. Nat Phys, 2006, 2(3): 177-180.
  • 10Beenakker C W J. Specular Andreev reflection in graph-ene[J].PhysRevLett,2006,97(6): 067007.1-067007.6.

二级参考文献72

  • 1魏江南,景宏华,杨韧.三维空间中三体相互作用的能级分布[J].河北科技大学学报,2001,22(1):68-72. 被引量:1
  • 2宫箭,梁希侠,班士良.Resonant tunnelling in parabolic quantum well structures under a uniform transverse magnetic field[J].Chinese Physics B,2005,14(1):201-207. 被引量:2
  • 3张红梅,刘德.传递矩阵方法与矩形势垒的量子隧穿[J].河北科技大学学报,2006,27(3):196-199. 被引量:10
  • 4CASTRO N A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene[J]. Rev Mod Phys, 2009, 81(1) : 109 -162.
  • 5NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669.
  • 6NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature (London), 2005,438: 197-200.
  • 7CASTRO E V, NOVOSELOV K S, MOROZOV S V, et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99(21): 216802 pp. 1-4.
  • 8KATSNELSON M I, NOVOSELOV K S, GEIM A K. Chiral tunnelling and the Klein paradox in graphene[J]. Nature Phys,2006, 2(9): 620-625.
  • 9BAI Chun-xu, ZHANG Xiang-dong. Klein paradox and resonant tunneling in a graphene superlattice[J]. Phys Rev B, 2007,76(7): 075430 pp. 1-7.
  • 10BARBIER M, PEETERS F M, VASILOPOULOS P, et al. Dirac and Klein-Gordon particles in one-dimensional periodic potentials[J]. Phys Rev B, 2008,77(11): 115446 pp. 1 9.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部