期刊文献+

基于RBF神经网络的Ni-TiN镀层耐蚀性能预测研究

Prediction of Corrosion Resistance of Ni-TiN Coating Based on RBF Neural Network
下载PDF
导出
摘要 采用脉冲电沉积方法在40Cr钢表面制备Ni-TiN复合镀层,并以TiN粒子浓度、电流密度以及占空比为输入层,以Ni-TiN复合镀层腐蚀量为输出层,建立RBF神经网络模型,对镀层腐蚀量进行预测研究,最后利用扫描电镜观察不同工艺参数下镀层表面形貌。结果表明,RBF神经网络对镀层腐蚀量有较强的预测能力,其预测值与实验值相对误差最小仅为0.73%;SEM分析表明,当TiN粒子浓度10 g/L,电流密度5 A/dm2,占空比60%时,Ni-TiN复合镀层经腐蚀后表面较为平整,腐蚀坑较少,耐腐蚀性能较好。 The Ni-TiN composite coatings were deposited on the surface of 40 Cr steel by pulse electrodeposition method. The RBF neural network model was established by using the TiN particle concentration,current density and duty cycle as the input layer,and the corrosion rate of Ni-TiN composite coating as the output layer. The corrosion rate of the coating was predicted,and the surface morphology of the coating was observed under the scanning electron microscope. The results show that the corrosion loss weight of the coating was predicted really by the RBF neural network,and the min relative error was only 0. 73% between the predicted value and the experimental value; SEM analysis show that when the concentration of TiN particles 10 g / L,current density of 5 A / dm^2,duty cycle 60%,Ni-TiN composite coating on the surface after the corrosion was flat,less corrosion pits,and the corrosion resistance was better.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2016年第6期1707-1710,共4页 Journal of Synthetic Crystals
关键词 RBF神经网络 Ni-TiN复合镀层 腐蚀量 RBF neural network Ni-TiN composite coating corrosion loss weight
  • 相关文献

参考文献4

二级参考文献26

  • 1方莉俐,张兵临,禹建丽,姚宁.用人工神经网络预测电铸自支撑金刚石-镍复合膜沉积结果[J].稀有金属材料与工程,2006,35(4):638-641. 被引量:10
  • 2Z. Ji, Y. Li. The Application of RBF Neural Network on Construction Cost Forecasting [C]. Second International Workshop on Knowledge Discovery and Data Mining. Moscow, Russia: 2009, 102-107.
  • 3Y. LIU, S. L. ZHAO, C. YI. The Forecast for Corrosion of Reinforcing Steel Based on RBF Neural Network [C]. Proceedings of the 2009 International Conference on Wavelet Analysis and Pattern Recognition. Baoding, China: 2009, 72-76.
  • 4Peng B, Zhang H S. Dynamic Loathng and Stress Analysis on Grankshaft of Reciprocating Mud Pump[J].Journd of Vtbroengineering,2013,15(2):10418-10622.
  • 5Xia F F, Wu M H, Wang F, et al. Nanocomposit Ni-TiN Coatings Prepared by Ultrasonic Hectrodeposition[J].Current Applied Physics,2009,9(1) :44-47.
  • 6Abdel A. Hard and Corrosion Resistant Nanocomposite Coating for AI Alloy[ J ]. Materials Science and Engineering A ,2008,474:181-187.
  • 7He W B, Zhang B L, Zhuang H R, et al. Preparation and Sintering of Ni-coated Si3N4 Composite Powders[J]. Ceramics International,2005,31:811-815.
  • 8Chang L M, An M Z, Guo H F, et al. Microstructure and Properties of Ni-Co/nano-Al2O3 Composite Coatings by Pulse Reversal Current Eleetrodeposition [ J]. Applied Surface Science,2006,253(4) :2132-2137.
  • 9Xia F F, Liu C, Ma C H, et al. Preparation and Corrosion Behavior of Electrodeposited Ni-TiN Composite Coatings [ J ]. Int. Journal of Refractory Metals and Hard Materials ,2012,35:295-299.
  • 10董会丽,郑世杰.基于RBF神经网络的复合材料层合壳荷载识别[J].工程力学,2008,25(3):64-67. 被引量:4

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部