期刊文献+

甘蔗遗传改良研究进展 被引量:11

Review on genetic improvement of sugarcane(Saccharum spp.)
下载PDF
导出
摘要 甘蔗属于多年生热带亚热带的大型草本植物,是公认的将光能转化为化学能效率最高的植物之一。甘蔗作为重要的糖料和能源作物,品种改良一直以来都受到人们极大的重视,甘蔗传统育种和品种配套栽培技术大大提高了蔗茎产量和蔗糖分含量。近年来,生物技术的发展与应用为甘蔗遗传改良提供了很大的帮助。为了便于育种人员充分了解甘蔗遗传改良的研究进展,针对甘蔗常规育种、基因组学、转基因技术及分子标记辅助育种等研究方向进行了阐述。 Sugarcane(Saccharum spp.) is a large-stature perennial grass that is cultivated in tropical and semitropical regions of the world,and it is one of the most efficient crops in the world in converting energy from sunlight into chemical energy. Global interest in sugarcane genetic improvement has increased significantly due to its economic impact on sustainable energy and sugar production. Sugarcane traditional breeding and cultivation techniques have contributed to a huge increase in sugarcane yield and sucrose content. In recent years,efforts to improve sugarcane have focused on the development of biotechnology for this crop. It is very critical to know information about genetic improvement of sugarcane for the breeder. In this paper,the progress in conventional breeding,genomics,transgenics and markerassisted breeding for genetic improvement of sugarcane were reviewed.
出处 《广东农业科学》 CAS 2016年第6期58-63,共6页 Guangdong Agricultural Sciences
基金 广东省科技计划项目(2014A030304012 2014A020208012 2015A030302009) 湛江市科技计划项目(2014A03020 2015A03014) 广东省农机农艺配套甘蔗良种选育关键技术创新能力建设项目(粤农计[2015]6号)
关键词 甘蔗 遗传改良 基因组学 转基因 分子标记辅助育种 sugarcane genetic improvement genomics transgenics marker-assisted breeding
  • 相关文献

参考文献61

  • 1Borrero M A V, Pereira J T V, Miranda E E. An environmental management method for sugar cane alcohol production in Brazil [J]. Biomass and Bioenergy, 2003, 25 (3) : 287-299.
  • 2Hofsetz K, Silva M A. Brazilian sugarcane bagasse: Energy and non-energy consumption [ J]. Biomass and Bioenergy, 2012, 46: 564-573.
  • 3Rae A L, Jackson M A, Nguyen C H, et al. Functional specialization of vacuoles in sugarcane leaf and stem [J]. Tropical Plant Biology, 2009, 2 (1) : 13-22.
  • 4Arnouh S, Brancourt-Hulmel M. A review on miscanthus biomass production and composition for bioenergy use: Genotypic and environmental variability and implications for breeding [ J]. Bioenergy Research, 2015, 8 (2) : 1-25.
  • 5Loomis R S, Williams W A. Maximum crop productivity: an estimate [J]. Crop Sci, 1963, 3: 67-72.
  • 6FAO. FAOSTAT data [EB/OL]. http://faostat3.fao.org/ home/index.html, 2011.
  • 7Butterfield M K, D' Hont A, Berding N. The sugarcanegenome: a synthesis of current understanding, and lessons for breeding and biotechnology [J]. Proc S Afr Sug Technol Ass, 2001, 75: 1-5.
  • 8李奇伟,邓海华.当前我国甘蔗品种选育与推广中存在的突出问题及对策[J].甘蔗糖业,2011,40(4):70-76. 被引量:42
  • 9Ming R, Moore P H, Wu K, et al. Sugarcane improvement through breeding and biotechnology [J]. Plant Breeding Reviews, 2006, 27: 15.
  • 10Loureiro M E, Barbosa M H P, Lopes F J F, et al. Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol//Routes to cellulosic ethanol IMP. Springer New York, 2011: 199-239.

二级参考文献53

  • 1肖炳光,徐照丽,陈学军,申爱荣,李永平,朱军.利用DH群体构建烤烟分子标记遗传连锁图[J].中国烟草学报,2006,12(4):35-40. 被引量:31
  • 2刘文荣,张积森,饶进,蔡秋华,翁笑艳,阮妙鸿,阙友雄,陈如凯,张木清.干旱胁迫下斑茅消减文库的构建及分析[J].作物学报,2007,33(6):961-967. 被引量:12
  • 3张积森,李伟,阙友雄,阮妙鸿,张木清,陈如凯.斑茅两个看家基因片段的克隆及其在基因芯片中的应用[J].热带亚热带植物学报,2007,15(4):277-283. 被引量:14
  • 4Schena K N, Zhang J, Nguyen H T. Molecular strategies for managing environmental stress. // Chora V L, Singly R B, Varma A. Crop Productivity and Sustainability-Shaping the Future. New Delhi, India: Oxford and IBH Publishing Co .PVT. LTD, 1998: 501-524.
  • 5Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology, 1999, 17: 287-291.
  • 6Hans-Hubert K, Dorothea B, Yanling W, Schnable P S, Wood A J. The ALDH gene superfamily of Arabidopsis. Trends in Plant Science, 2004, 9(8): 372-377.
  • 7Habenicht A, Hellman U, Cerff R. Non-phoephorylating GAPDH of higher plant is a member of the aldehyde dehydrogenase superfamily with no sequence homology to phosphorylating GAPDH. Journal of Molecular Biology, 1994, 237: 165-171.
  • 8Chen Z, Stamler J S. Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase. Trends in Cardiovasc Medical, 2006, 16(8): 259-265.
  • 9Chen Z, Foster M W, Zhang J, Mao L, Rockman H A, Kawamoto T, Kitagawa K, Nakayama K I, Hess D T, Stamler J S. An essential role for mitochondrial aldehyde dehydrogenase in nitroglycerin bioactivation. Proceedings of the National Academy of Sciences of the USA, 2005, 102(34): 12159-12164.
  • 10Zhang J, Chen Z, Cobb F R, Stamler J S. Circulation role of mitochondrial aldehyde dehydrogenase in nitroglyeerin-induced vasodilation of coronary and systemic vessels: an intact canine model. Circulation, 2004, 110: 750-755.

共引文献105

同被引文献166

引证文献11

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部