期刊文献+

有多余坐标完整系统的自由运动 被引量:2

FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES
下载PDF
导出
摘要 对于完整力学系统,若选取的参数不是完全独立的,则称为有多余坐标的完整系统.由于完整力学系统的第二类Lagrange方程中没有约束力,故为研究完整力学系统的约束力,需采用有多余坐标的带乘子的Lagrange方程或第一类Lagrange方程.一些动力学问题要求约束力不能为零,而另一些问题要求约束力很小.如果约束力为零,则称为系统的自由运动问题.本文提出并研究了有多余坐标完整系统的自由运动问题.为研究系统的自由运动,首先,由d’Alembert--Lagrange原理,利用Lagrange乘子法建立有多余坐标完整系统的运动微分方程;其次,由多余坐标完整系统的运动方程和约束方程建立乘子满足的代数方程并得到约束力的表达式;最后,由约束系统自由运动的定义,令所有乘子为零,得到系统实现自由运动的条件.这些条件的个数等于约束方程的个数,它们依赖于系统的动能、广义力和约束方程,给出其中任意两个条件,均可以得到实现自由运动时对另一个条件的限制.即当给定动能和约束方程,这些条件会给出实现自由运动时广义力之间的关系.当给定动能和广义力,这些条件会给出实现自由运动时对约束方程的限制.当给定广义力和约束方程,这些条件会给出实现自由运动时对动能的限制.文末,举例并说明方法和结果的应用. If the parameters are not completely independent for holonomic systems, it is called holonomic systems with redundant coordinates. In order to study the forces of constraints for holonomic systems, we use the Lagrange equations with multiplicators of redundant coordinates or the first kind of Lagrange equations. Because there are no forces of constraints in the second kind of Lagrange equations. In some mechanical problems, the forces of constraints should not be equal to zero. In other conditions, the forces of constraints are very tiny. However, if the forces of constraints are all equal to zero, we called the free motion of constraints mechanical systems. This paper presents the free motion of holonomic system with redundant coordinates. At first, the differential equations of motion of the system are established according to d’Alembert-Lagrange principle. Secondly, the form of forces of constraints is determined by using the equations of constraints and the equations of motion. Finally, the condition under which the system has a free motion is obtained. The number of this conditions is equal to the constraints equation’s, its depend on the kinetic energy, generalized forces and constraints equations. If the two arbitrary conditions are given, the third one should be obtained when the system becomes free motion. At the end, some examples are given to illustrate the application of the methods and results.
出处 《力学学报》 EI CSCD 北大核心 2016年第4期972-975,共4页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10932002 11272050 11572034)
关键词 多余坐标 完整系统 约束力 自由运动 redundant coordinate, holonomic system, force of constraints, free motion
  • 相关文献

参考文献14

  • 1Lagrange JL. Mecanique Analytique . Paris: Jaques Gabay, 2006.
  • 2Hurtado JE, Sinclair AJ. Lagrangian mechanics of overparameterizedsystems. Nonlinear Dynamics, 2011, 66: 201-212.
  • 3Lure AI. Analitiqeska Mehanika. Moskva: Fizmatgiz,1961.
  • 4陈滨. 分析力学. 第二版. 北京: 北京大学出版社,2012.
  • 5Brogliato B, Goeleven D. Singular mass matrix and redundant constraintsin unilaterally constrained Lagrangian and Hamiltonian systems.Multibody System Dynamics, 2015, 35: 39-61.
  • 6Wojtyra M, Fraczek J. Solvability of reactions in rigid multibodysystems with redundant nonholonomic constraints. Multibody SystemDynamics, 2013, 30: 153-171.
  • 7Whittaker ET. A Treatise on the Analytical Dynamics of Particlesand Rigid Bodies, 4th edn. Cambridge: Cambridge University Press,1970, Sect. 24 & 87.
  • 8Jungnickel U. Dierential-algebraic equations in Riemannian spacesand applications to multibody system dynamics. ZAMM, 1994, 74:409-415.
  • 9梅凤翔.非完整系统的自由运动与非完整性的消失[J].力学学报,1994,26(4):470-476. 被引量:22
  • 10Зегжда СА, Солтаханов ШХ, Юшков МП. Уравнения движ ения Неголономых Систем и Вариатсионные Принципы Мех аники. Новый Класс Задач Управления. Москва: Физматлит, 2005.

二级参考文献13

  • 1陈滨.状态空间非线性约束的完整性与非完整性[J].中国科学(A辑),1993,23(8):839-846. 被引量:6
  • 2梅凤翔.非完整系统的自由运动与非完整性的消失[J].力学学报,1994,26(4):470-476. 被引量:22
  • 3梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985..
  • 4郭仲衡,现代数学和力学,1993年
  • 5陈滨,分析动力学,1987年
  • 6梅凤翔,非完整系统力学基础,1985年
  • 7Liang L F, Hu H C. Generalized variational principles of three kinds of variables in general mechanics. Science in China (Series A), 2001,44(6) :770 -776.
  • 8Santilli R M. Foundations of theoretical mechanics I. New York : Springer-Verlag ,1978.
  • 9Hojman S,Urrutia L F. On the inverse problem of the cal- culus of variations. Journal of Mathematical Physics-Scitati- on,1981,22: 1896 - 1902.
  • 10Arnold V I,Kozlov V V, Neishtadt A I. Mathematical as- pects of classical and celestial Mechanics,3-rd ed. Beijing: Science Press,2009.

共引文献21

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部