期刊文献+

石墨相氮化碳光催化剂研究进展 被引量:20

Research progress of graphitic carbon nitride in photocatalysis
下载PDF
导出
摘要 石墨相氮化碳(g-C_3N_4)作为一种可见光响应的半导体聚合物光催化剂,具有廉价易得、化学稳定性好、无毒无害以及合适的禁带宽度和能带位置等优点,但也存在只能吸收波长小于475nm的光且光生载流子复合严重等问题,需要对其进行改性来提高光催化能力。本文在介绍g-C_3N_4的结构、特性和制备方法的基础上,着重评述了g-C_3N_4在形貌调控、半导体复合、元素掺杂、分子掺杂和染料敏化等改性手段方面的研究进展以及在降解有机污染物、分解水制氢、还原CO_2和有机合成等方面的应用。最后指出g-C_3N_4未来的研究方向在于用多种手段共同改性g-C_3N_4、拓展g-C_3N_4在光催化领域的应用和深入进行机理研究等方面。 As a visible light responding polymer and semiconductor photocatalyst,graphitic carbon nitride(g-C_3N_4)has the advantages of cheap and readily available,chemically stable,non-toxic and harmless,as well as having suitable band gap and band position etc. However,g-C_3N_4 can only absorb light shorter than 460 nm and its photogenerated carriers recombine severely,which has restricted its application. Modification of g-C_3N_4 is an effective means to improve its photocatalytic ability. This article outlines the structure,properties and preparation methods of g-C_3N_4,then focuses on the research progress of g-C_3N_4,including morphology controlling,compounding with semiconductors,element doping,molecular doping and dye-sensitized. It also discusses the applications of g-C_3N_4 in pollutants removal,hydrogen evolution,CO_2 reduction and other aspects of organic synthesis. The prospects for the development of g-C_3N_4 based photocatalysts are also discussed,and the research direction of graphitic carbon nitride are proposed as multiple modification,application and mechanism exploration.
出处 《化工进展》 EI CAS CSCD 北大核心 2016年第7期2063-2070,共8页 Chemical Industry and Engineering Progress
关键词 石墨相氮化碳 催化剂 太阳能 制氢 聚合物 graphitic carbon nitride catalyst solar energy hydrogen production polymers
  • 相关文献

参考文献49

  • 1李家德,方稳,周晚琴,余长林.银基半导体光催化剂研究进展[J].化工进展,2015,34(1):113-118. 被引量:5
  • 2黄颖,闫常峰,郭常青,黄诗琳.半导体Z反应光解水制氢的光能转换效率及研究进展[J].化工进展,2014,33(12):3221-3229. 被引量:5
  • 3FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238 (5358): 37-38.
  • 4ZHANG F, YAMAKATA A, MAEDA K, et al. Cobalt-modified porous single-crystalline LaTiO2N for highly efficient water oxidation under visible light[J]. Journal of the American Chemical Society, 2012, 134 (20): 8348-8351.
  • 5YANG J H, YAN H J, XU Z, et al. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production[J]. Philosophical Transactions of the Royal Society A (Mathematical, Physical & Engineering Sciences), 2013, 371 (1996) : 0430 (15 pp.).
  • 6CHEN S, QI Y, HISATOMI T, et al. Efficient visible-light-driven z-scheme overall water splitting using a MgTa206_/Ny/TaON heterostructure photocatalyst for H-2 evolution [J]. Angewandte Chemie-InternationalEdition, 2015, 54 (29): 8498-8501.
  • 7WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8 ( 1 ) : 76-80.
  • 8YAN H-Y, WEI Q, ZHENG B-B, et al. Low-compressibility and hard material carbon nitride imide C2N2(NH): first principles calculations[J]. Journal of Solid State Chemistry, 2011, 184 (3): 572-577.
  • 9THOMAS A, FISCHER A, GOETTMANN F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts[J]. Journal of Materials Chemistry, 2008, 18 (41): 4893-4908.
  • 10LIEBIG J. About some nitrogen compounds[J]. Ann. Pharm, 1834, 10 (10) .

二级参考文献205

  • 1Liu, A. Y.; Cohen, M. L. Science 1989, 245, 841. doi: 10.1126/ science.245.4920.841.
  • 2Teter, D. M.; Hemley, R. J. Science 1996, 271, 53. doi: 10.1126/ science.271.5245.53.
  • 3Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. N. J. Chem. 2002, 26, 508. doi: 10.1039/ b 111062b.
  • 4Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Mfiller, J. O.; Schl6gl, R.; Carlsson, J. M. J. Mate1: Chem. 2008, 18, 4893. doi: 10.1039/b800274f.
  • 5Donnet, C.; Erdemir, A. Surf Coat. Technol. 2004, 76, 180.
  • 6Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Edit. 2006, 45, 4467. doi: 10.1002/(ISSN)1521-3773.
  • 7Zhao, H.; Lei, M.; Yang, X.; Jian, J.; Chen, X. J. Am. Chem. Soc. 2005, 127, 15722. doi: 10.1021/ja055877i.
  • 8Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317.
  • 9Maeda, K.; Wang, X.; Nishihara, Y.; Lu, D.; Antonietti, M.; Domen, K. J2 Phys. Chem. C 2009, ll3, 4940. doi: 10.1021/ jp809119m.
  • 10Zhang, J.; Sun, J.; Maeda, K.; Domen, K.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Energy Environ. Sci. 2010, 4, 675.

共引文献50

同被引文献96

引证文献20

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部