期刊文献+

混合液气压缩储能机电系统控制策略

Control Strategy of Electromechanical System of Hydro-Pneumatic Compressed Air Storage System
下载PDF
导出
摘要 微小规模压缩空气储能是一种环保且很有发展前景的储能方式。本文分析了混合液气压缩储能系统中机电转换环节的工作特性,进而对储能系统的电机控制策略进行研究,提出了利用最大效率点和最大功率点跟踪混合控制策略。针对混合液气压缩储能系统中能量形式转换多的特点,利用宏观能流表示法对混合压缩空气储能系统进行建模,重点对机电转换环节进行仿真。分别利用最大效率点跟踪、最大功率点跟踪以及两种方法的混合控制作为系统控制策略,对比分析仿真结果,证明控制策略的控制效果。 Micro and small scale compressed air energy storage (CAES) is an environmental friendly and promising energy saving method. For optimizing the control strategy of motor, this paper analyzed the characteristics of electromechanical conversion of the storage system, and then proposed a hybrid control strategy based on the maximum power point tracking and maximum efficiency point tracking. A simulation model was developed by energetic macroscopic representation (EMR) to analysis the working processes of system, according to various transformation forms of energy. This paper used the maximum power point tracking, maximum efficiency point tracking and the hybrid control of these two methods as the control strategy for system simulation. Comparisons of the simulation results show that energy conversion and storage performance can be effectively improved by adopting the hybrid control method.
出处 《电工技术学报》 EI CSCD 北大核心 2016年第14期67-74,共8页 Transactions of China Electrotechnical Society
关键词 压缩空气储能系统 宏观能留表示法 控制策略 最大效率点跟踪 Compressed air storage system energetic macroscopic representation control strategy maximum efficiency point tracking
  • 相关文献

参考文献18

二级参考文献155

  • 1杜雄,周雒维,谢品芳.直流侧APF主电路参数与补偿性能的关系[J].中国电机工程学报,2004,24(11):39-42. 被引量:41
  • 2魏凤春,张恒,蔡红,陈东明.飞轮储能技术研究[J].洛阳大学学报,2005,20(2):27-30. 被引量:14
  • 3严俊,赵立飞.储能技术在分布式发电中的应用[J].华北电力技术,2006(10):16-19. 被引量:31
  • 4Hull J R, Day A C. Development of flywheel energy system[R]. DOE Annual Peer Review Meeting, 2002.
  • 5Nagaya S, Kashima N, Minami M, et al. Study on high temperature superconducting magnetic bearing for 10kWh flywheel energy storage system[J]. IEEE Trans. Appl. Supercond., 2001, 11(1): 1649-1652.
  • 6Nagaya S, Kashima N, Minami M, et al. Study on the characteristics of high temperature superconducting magnetic thrust bearing for 25kWh flywheel[J]. Physica C, 2001, 357-360(Part 1): 866-869.
  • 7Yamauchi Y, Uchiyama N, Suzuki E, et al. Development of 50kWh-class superconducting flywheel energy storage system[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2006, S25: 16-18.
  • 8Matsunaga K, Tomita M, Yamachi N, et al. Fabrication and evaluation of superconducting bearing module for 10kWh flywheel[J]. Physica C, 2002, 378-381(Part 1): 883-887.
  • 9Bornemann H J, Tonoli A, Ritter T, et al. Engineering prototype of a superconducting flywheel for long term energy storage[J]. IEEE Trans. Appl. Supercond., 1995, 5(2): 618-621.
  • 10Werfel F N, Floegel Delor U, Riedel T, et al. 250 kW flywheel with HTS magnetic bearing for industrial use[J]. J. Phys.: Conf. Ser., 2008, 97: 012206.

共引文献348

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部