期刊文献+

具有参数辨识的永磁同步电机无位置传感器控制 被引量:79

Sensorless Control of Permanent Magnet Synchronous Motor with Online Parameter Identification
下载PDF
导出
摘要 转子磁极位置估计的准确性决定永磁同步电机无位置传感器控制系统的性能,为了实现转子位置和转速的精确控制,需要对电机参数进行在线辨识。根据实际冰箱制冷系统需求,采用模型参考自适应系统构建无位置传感器矢量控制方案,在仿真研究电机参数变化对位置估算影响的基础上,提出了一种具有参数辨识的内埋式永磁同步电机无位置传感器控制方案。利用电机的电流模型,运用扩展卡尔曼滤波器对转子磁链和交轴电感同时进行在线辨识,并将辨识出的参数用于更新无位置传感器矢量控制算法中的电机模型。仿真和实验结果表明,参数辨识算法可以有效地辨识出实际的转子磁链和交轴电感,具有参数辨识的无位置传感器矢量控制方案可行有效,在压缩机厂商提供的电机参数存在一定误差的情况下可以保证冰箱制冷系统的性能。 The accuracy of the rotor position estimation determines the performance of the sensorless control system of permanent magnet synchronous motor (PMSM). In order to realize precise rotor position/speed control, motor parameters should be online identified. According to the requirements of practical refrigeration system, model reference adaptive system (MRAS) was used in building a sensorless vector control scheme. Then the influence of the changed motor parameters was simulated, and a sensorless control scheme with parameter identification of interior permanent magnet synchronous motor (IPMSM) was proposed. An extended Kalman filter (EKF) online identified the parameters of the rotor flux linkage and q-axis inductance based on the current model of IPMSM, subsequently the identified parameters updated motor model in the sensorless control algorithm. Simulation and experimental results show that the parameter identification algorithm can effectively identify the actual rotor flux linkage as well as q-axis inductance. The position sensorless vector control scheme combined with online parameter identification is feasible and effective, which guarantees the performance of the refrigeration system with some errors of the motor parameters provided by compressor manufacturers.
出处 《电工技术学报》 EI CSCD 北大核心 2016年第14期139-147,164,共10页 Transactions of China Electrotechnical Society
基金 国家自然科学基金资助项目(61104046 61273045)
关键词 内埋式永磁同步电机 无传感器控制 参数辨识 模型参考自适应系统 扩展卡尔曼滤波器 Interior permanent-magnet synchronous motor sensorless control parameter identi- fication model reference adaptive system extended Kalman filter
  • 相关文献

参考文献22

  • 1Benjak O, Gerling D. Review of position estimationmethods for IPMSM drives without a position sensorpart I: nonadaptive methods[C]//IEEE XIX InternationalConference on Electrical Machines (ICEM),Rome, 2010: 1-6.
  • 2Benjak O, Gerling D. Review of position estimationmethods for IPMSM drives without a position sensorpart II: adaptive methods[C]//IEEE XIX Inter- nationalConference on Electrical Machines (ICEM), Rome,2010: 1-6.
  • 3谷善茂,何凤有,谭国俊,叶生文.永磁同步电动机无传感器控制技术现状与发展[J].电工技术学报,2009,24(11):14-20. 被引量:112
  • 4Liang Yan, Li Yongdong. Sensorless control of PMsynchronous motors based on MRAS method andinitial position estimation[C]//IEEE 6th InternationalConference on Electrical Machines and Systems(ICEMS), Beijing, China, 2003, 1: 96-99.
  • 5Kojabadi H M, Chang L. Sensorless PMSM drivewith MRAS-based adaptive speed estimator[C]//37thIEEE Power Electronics Specialists ConferencePESC'06, Jeju, 2006: 1-5.
  • 6Shinnaka S. New sensorless vector control usingminimum-order flux state observer in a stationaryreference frame for permanent-magnet synchronousmotors[J]. IEEE Transactions on Industrial Electronics,2006, 53(2): 388-398.
  • 7尚喆,赵荣祥,窦汝振.基于自适应滑模观测器的永磁同步电机无位置传感器控制研究[J].中国电机工程学报,2007,27(3):23-27. 被引量:146
  • 8黄守道,高剑,肖磊,陆凯元.压缩机用内置式永磁同步电机无位置传感器控制[J].电工技术学报,2013,28(5):182-187. 被引量:17
  • 9Bolognani S, Oboe R, Zigliotto M. Sensorlessfull-digital PMSM drive with EKF estimation ofspeed and rotor position[J]. IEEE Transactions onIndustrial Electronics, 1999, 46(1): 184-191.
  • 10Bolognani S, Tubiana L, Zigliotto M. ExtendedKalman filter tuning in sensorless PMSM drives[J].IEEE Transactions on Industry Applications, 2003,39(6): 1741-1747.

二级参考文献61

共引文献426

同被引文献527

引证文献79

二级引证文献590

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部