期刊文献+

不同表面复合速率情况下IBC太阳电池发射区半宽度研究 被引量:1

Emitter Half Width of IBC Solar Cell under Different Surface Recombination Velocity
下载PDF
导出
摘要 利用TCAD半导体器件仿真软件对N型插指背接触(Interdigitated Back Contact,IBC)单晶硅太阳电池发射区半宽度进行研究,全面系统地分析了在不同背表面复合速率的情况下,发射区半宽度对IBC太阳电池短路电流密度(JSC)、开路电压(VOC)、填充因子(FF)及转换效率(Eff)的影响。结果表明:随着背表面复合速率的增大,对于不同发射区半宽度的情况,IBC太阳电池JSC、VOC、FF及Eff均显著降低。当背表面复合速率一定时,发射区半宽度越大,JSC、VOC越高,而FF越低。随着发射区半宽度的增大,IBC太阳电池Eff呈现先增大后减小的变化特点。当背表面复合速率较小(50~500 cm/s)时,最优的发射区半宽度为800μm。当背表面复合速率较高(≥5000 cm/s)时,最优的发射区半宽度为1200μm。 The emitter half width of n-Type Interdigitated Back Contact mon O-crystalline silicon solar cell are studied by using TCAD semiconductor device simulation software.The influences of emitter half width on IBC solar cell 's short-circuit current density,open-circuit voltage,filling factor and conversion efficiency under different back surface recombination velocity are studied comprehensively and systematically.The research shows that the IBC solar cell's short-circuit current density,open-circuit voltage,filling factor and conversion efficiency were significantly reduced with the increasing of the back surface recombination velocity.Along,in the case of different emitter half width.When the back surface recombination velocity is constant,the longer the emitter half width,the greater theshort-circuit current density,the higher the open-circuit voltage,the lower the filling factor.The IBC solar cell Eff first increases then decreases with the increasing of the emitter half width.When the back surface recombination velocity is smaller(50-500 cm/s),the optimal emitter half width is 800 μm.When the back surface recombination velocity is greater(≥5000 cm/s),the optimal emitter half width is 1200 μm.
出处 《硅酸盐通报》 CAS CSCD 北大核心 2016年第6期1688-1692,1698,共6页 Bulletin of the Chinese Ceramic Society
基金 国家自然科学基金项目(11304020)
关键词 背接触 太阳电池 发射区 半宽度 表面复合速度 back contact solar cell emitter half width surface recombination velocity
  • 相关文献

参考文献16

  • 1Batoul B,Abdellatif Z.Optimal design of buried emitter of EWT silicon solar cells type by numerical simulation[J].Energy Procedia,2014,(44):126-131.
  • 2Giuseppe G,Valentin D,Razvan R,et al.Large-Area back-Contact back-junction solar cell with efficiency exceeding 21%[J].IEEE Journal of Photovoltaics,2013,3(1):560-565.
  • 3Green M A,Emery K,Hiskawa Y,et al.Solar cell efficiency tables(version 44)[J].Progress in Photovoltaics Research&Applications,2014,22(7):701-710.
  • 4Smith D,Cousins P,Westerberg S,et al.Towards the practical limits of silicon solar cells[J].IEEE Journal of Photovoltaics,2014,6(4):1465-1469.
  • 5Hilali M M,Hacke P,Gee J M.Two-dimensional modeling of EWT multicrystalline silicon solar cells and comparison with the IBC solar cell[J].IEEE World Conference on Photovoltaic Energy Conversion,2006:1299-1303.
  • 6Kim D S,Meemongkolkiat V,Ebong A,et al.2D-modeling and development of interdigitated back contact solar cells on low-cost substrates[J].IEEE World Conference on Photovoltaic Energy Conversion,2006:1417-1420.
  • 7Lu M,Das U,Bowden S,et al.Rear surface passivation of interdigitated back contact silicon heterojunction solar cell and 2D simulation study[J].IEEE Photovoltaic Specialists Conference,2008:1-5.
  • 8李幼真,陈勇民.晶硅衬底参数对太阳电池输出特性的影响[J].中国有色金属学报,2012,22(8):2401-2406. 被引量:8
  • 9Zhang W,Chen C,Jia W,et al.Optimization of metal coverage on the emitter in n-type interdigitated back contact solar cells using a PC2D simulation[J].Chinese Phys Lett,2013,30(7):8801-8805.
  • 10Franklin E,Fong K,Mc Intosh K,et al.Design,fabrication and characterisation of a 24.4%efficient interdigitated back contact solar cell[C]//27th European Photovoltaic Solar Energy Conference,Amsterdam,The Netherlands,2014:2556-2572.

二级参考文献11

  • 1赵玉文,王斯成,王文静等.中国光伏产业发展研究报告(2006-2007)[R].中国可再生能源发展项目办公室,2008.
  • 2ROSTRON R W. Short circuit current in silicon solar cells-dependence on cell parameters[J]. IEEE Transaction on Electron Device, 1972, 19(9): 1024-1028.
  • 3LOFERSKI J J. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion[J]. Journal of Applied Physics, 1956, 27(7): 777-784.
  • 4王景霄,杜永超,刘春明.太阳电池模拟软件-PCID[C]//中国太阳能学会学术年会论文集.上海:上海交通大学出版社,2003:41-43.
  • 5CLUGSTON D A, BASORE P A. PCID version 5: 32-bit solar cell modeling on personal computers[C]//Proceedings of the 26th IEEE Photovoltaic Specialists Conference. Anaheim, California, USA: Institute of Electrical and Electronics Engineers Inc., 1997 207-210.
  • 6BASORE P A, CLUGSTON D A. User manual for PCID version 5.9[R]. Sydney, Australia: University of New South Wales, 2003: 18-24.
  • 7KLAASSEN D B M, SLOTOBOOM J W, DEGRAAFF H C. Unified apparent bandgap narrow in n-and p-type Si[J]. Solid State Electronics, 1992, 35(2): 125-129.
  • 8MCINTOSH K R, CUDZINOVIC M J, SMITH D D. The choice of silicon wafer for the production of low-cost rear contact solar cells[C]//Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka, Japan: Concentration Banking Information Inc., 2003(2): 971-974.
  • 9周继承,陈勇民,李莉,李斐,赵保星.A study on the key factors affecting the electronic proper-ties of monocrystalline silicon solar cells[J].Optoelectronics Letters,2009,5(6):422-426. 被引量:3
  • 10周继承,李斐,陈勇民,赵保星.铝背场对单晶硅太阳电池输出特性的影响[J].半导体光电,2009,30(6):838-841. 被引量:6

共引文献7

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部