期刊文献+

混合糖发酵重组酿酒酵母的菌株构建和菊芋秸秆同步糖化发酵研究 被引量:3

Construction of mixed-sugar fermenting recombinant Saccharomyces cerevisiae and ethanol production from Jerusalem artichoke stalk by simultaneous saccharification and fermentation
原文传递
导出
摘要 【目的】构建可用于纤维素乙醇高效生产的混合糖发酵重组酿酒酵母菌株,并利用菊芋秸秆为原料进行乙醇发酵。【方法】筛选在木糖中生长较好的酿酒酵母YB-2625作为宿主菌,构建木糖共代谢菌株YB-2625 CCX。进一步通过r DNA位点多拷贝整合的方式,以YB-2625 CCX为出发菌株构建木糖脱氢酶过表达菌株,并筛选得到优势菌株YB-73。采用同步糖化发酵策略研究YB-73的菊芋秸秆发酵性能。【结果】YB-73菌株以90 g/L葡萄糖和30 g/L木糖为碳源进行混合糖发酵,乙醇产量比出发菌株YB-2625 CCX提高了13.9%,副产物木糖醇产率由0.89 g/g降低至0.31 g/g,下降了64.6%。利用重组菌YB-73对菊芋秸秆进行同步糖化发酵,48 h最高乙醇浓度达到6.10%(体积比)。【结论】通过转入木糖代谢途径以及r DNA位点多拷贝整合过表达木糖脱氢酶基因可有效提高菌株木糖发酵性能,并用于菊芋秸秆的纤维素乙醇生产。这是首次报道利用重组酿酒酵母进行菊芋秸秆原料的纤维素乙醇发酵。 [Objective] This study aimed to construct highly efficient recombinant Saccharomyces cerevisiae strain for cellulosic bioethanol production from Jerusalem artichoke stalk(JAS). [Methods] S. cerevisiae strain YB-2625 was selected as a host strain to construct xylose co-fermenting strain YB-2625 CCX, after which multicopies of xylitol dehydrogenase(XDH) encoding gene were integrated into the r DNA locus of YB-2625 CCX, and the most efficient strain named YB-73 was obtained. Finally, ethanol production from JAS was investigated by simultaneous saccharification and fermentation(SSF) using YB-73. [Results] YB-73 showed improved ethanol production by 13.9% compared with that of YB-2625 CCX and the xylitol yield of YB-73 was reduced to 0.31 g/g xylose from 0.89 g/g xylose by YB-2625 CCX when fermenting with 90 g/L glucose and 30 g/L xylose. Meanwhile, flocculation of YB-73 was observed in the presence of xylose, and the strain also showed high tolerance towards 5 g/L acetic acid and high temperature. The highest ethanol titer of 6.10%(V/V) was achieved from JAS in the process of SSF using YB-73. [Conclusion] Combination of host selection, introduction of xylose-consuming pathway and multi-copy overexpression of XDH in r DNA locus is a rational strategy to improve cellulosic bioethanol production performance of S. cerevisiae using JAS. This is the first report using recombinant S. cerevisiae to produce cellulosic ethanol from JAS.
出处 《微生物学通报》 CAS CSCD 北大核心 2016年第7期1411-1418,共8页 Microbiology China
基金 国家高技术研究发展计划(863计划)(No.2012AA021205,2012AA101805) 国家自然科学基金项目(No.21376043)
关键词 酿酒酵母 rDNA位点整合 纤维素乙醇 同步糖化发酵 生物质 菊芋秸秆 Saccharomyces cerevisiae rDNA locus integration Cellulosic ethanol Simultaneous saccharification and fermentation Biomass Jerusalem artichoke stalk(JAS)
  • 相关文献

参考文献27

  • 1Matsushika A, Inoue H, Kodaki T, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2009,84(1): 37-53.
  • 2Kim SR, Park YC, Jin YS, et al. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism[J]. Biotechnology Advances, 2013, 31(6): 851-861.
  • 3Kim SR, Skerker JM, Kang W, et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae[J].PLoS One, 2013,8(2): e57048.
  • 4Zha J, Hu ML, Shen MH, et al. Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation[J]. Frontiers in Microbiology, 2012, 3: 355.
  • 5Petes TD. Yeast ribosomal DNA genes are located on chromosome XII[J], Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(1): 410-414.
  • 6李勇昊,张晓月,程诚,熊亮,袁文杰,赵心清,白凤武.菊芋全植株生产燃料乙醇的工艺探讨[J].生物产业技术,2014(6):23-29. 被引量:3
  • 7Kim S, Kim CH. Evaluation of whole Jerusalem artichoke (Helianthus tuberosus L.) for consolidated bioprocessing ethanol production[J]. Renewable Energy, 2014, 65: 83-91.
  • 8Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization: fundamentals and biotechnology [J]. Microbiology and Molecular Biology Reviews,2002, 66(3): 506-577.
  • 9Zhang J, Chu DQ, Huang J, et al. Simultaneous saccharification and ethanol fermentation at high com stover solids loading in a helical stirring bioreactor[J]. Biotechnology and Bioengeering, 2010,105(4): 718-728.
  • 10Yang MH, Li WL, Liu BB, et al. High-concentration sugars production from com stover based on combined pretreatments and fed-batch process[J]. Bioresource Technology, 2010, 101(13):4884-4888.

二级参考文献104

  • 1沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31(8):746-751. 被引量:11
  • 2刘向勇,沈煜,郭亭,鲍晓明.rDNA介导的多拷贝整合表达载体的构建及其在酿酒酵母工业菌株中的应用[J].山东大学学报(理学版),2005,40(3):105-109. 被引量:20
  • 3隆小华,刘兆普,刘玲,王琳.盐生能源植物菊芋研究进展[J].海洋科学进展,2005,23(B12):80-85. 被引量:13
  • 4张延平,李寅,马延和.细胞工厂与生物炼制[J].化学进展,2007,19(7):1076-1083. 被引量:7
  • 5Esser K, Kues U. Flocculation and its implication for biotech-nology. Process Biochemistry, 1983, 18: 21 - 23.
  • 6Dengis PB, Nelissen LR, Rouxhet PG. Mechanisms of yeast flocculation: comparison of top-and bottom-fermenting strains. Applied and Environmental Microbiology, 1995, 61: 718 - 728.
  • 7Stratford M. Yeast flocculation: a new perspective. Advances in Microbial Physiology, 1992, 33: 1-71.
  • 8Soares EV, Seynaeve J. Induction of flocculation of brewer' s yeast strains of Saccharomyces cerevisiae by changing the calcium concentration and pH of culture medium. Biotechnology Letters, 2000, 22:1827- 1832.
  • 9Sousa M J, Teixeira JA, Mota M. Differences in the flocculation mechanism of Kluyveromyces marxianus and Saccharomyces cerevisiwe. Biotechnology Letters, 1992, 14:213 - 218.
  • 10Smit G, Strayer MH, Lugtenberg BJJ et al. Flocculence of Saccharomyces cerevisiae cells is induced by nutrient limitation, with cell surface hydrophobicity as a major determinant. Applied and Environmental Microbiology, 1992, 58:3709 - 3714.

共引文献55

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部