期刊文献+

谷胱甘肽修饰金纳米棒的制备及与Cu^(2+)的作用 被引量:5

Preparation of GSH-Modified Au Nanorods and Their Interaction with Copper Ions
下载PDF
导出
摘要 制备了谷胱甘肽(GSH)功能化的金纳米棒复合材料,根据金纳米棒的等离子体吸收峰对其组装排列敏感的特性,研究了功能化的金纳米棒在不同p H值下的组装行为及与Cu2+离子作用后引起的聚集程度、排列方式和光学吸收等变化.同时,测试了纯金纳米棒和谷胱甘肽修饰的金纳米棒分别与铜离子作用后所得复合材料的光热转换性能.结果表明,相对于纯金纳米棒材料强的光热转换效应,铜离子能明显降低复合材料的光热转换效应,与其它金属离子比较,GSH修饰的金纳米棒的等离子光学特性对铜离子具有选择性的变化. Au nanorods(Au NRs) modified by glutathione(GSH) were prepared.Based on the dependence of localized surface plasmon resonance(LSPR) peak shift on their arrangement,the structure and optical properties of GSH-modified Au NRs was studied at different pH conditions.At pH=5,some metal ions were chosen to detect the effect of their interaction with GSH-Au NRs on the LSPR peak of Au NRs.The results demonstrate that Cu^(2+) can obviously induce red shift of LSPR peak comparing with other metal ions.The reason is the rearrangement of Au NRs induced by Cu^(2+).Meanwhile,the photothermal experiment for pure Au NRs and GSH-Au NRs with copper ions were carried out to detect the effect of copper ions on optical properties of Au NRs.Comparing with pure Au NRs,GSH-Au NRs with copper ions decreased the efficiency of phothothermal conversion.During photothermalcoversion process,copper maybe capture the electron of Au NRs and decrease the efficiency of nonirradiation.So,Au NRs modified by GSH show the selective detection for Cu^(2+).The results here maybe provide a new method for detection of heavy metal ions.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2016年第7期1239-1244,共6页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:11174047,11374046)资助
关键词 金纳米棒 谷胱甘肽 铜离子 等离子体共振吸收 无机纳米复合材料 Au Nanorods Glutathione(GSH) Cu^(2+) ion Localized surface plasmon resonance(LSPR absorption Inorganic nanocomposite
  • 相关文献

参考文献26

  • 1Zhang W. , Zhang H. , Williams S. E. , Zhou A Tsekenisa G. , Filippidoub M. K. , Chatzipetrouc M 628-635 Talanta, 2015, 132, 321-326.
  • 2Tsoutib V. , Zergiotic I. , Chatzandroulis S. , Sensors and Actuators B, 2015,208.
  • 3Schneider E. , Clark D. S. , Biosens. Bioelectron. , 2013, 39, 1-13.
  • 4Turnlund J. R. , Am. J. Clin. Nutr. , 1998, 67, 960-964.
  • 5Yuan C. , Zhang K. , Zhang Z. , Wang S. , Anal. Chem. , 2012, 84, 9792-9801.
  • 6Fu X. , Lou T. ,Chen Z. , Lin M. , Feng W. , Chen L. , ACS Appl. Mater. Interfaces, 2012, 4, 1080-1086.
  • 7Wang Y. , DePrince A. E. , Gray S. K. , Lin X. M. , Pehon M. , J. Phys. Chem. Lett. , 2012, 1, 2692-2698.
  • 8Nie Z. , Fava D. , Kumacheva E. , Zon S. , Walker G. C. , Rubinstein M. , Nat. Mater. , 2007, 6,609-614.
  • 9Thomas K. G. , Barazzouk S. , Ipe B. I. , Joseph S. T. S. , Kamat P. V. , J. Phys. Chem. B, 2004, 108, 13066-13068.
  • 10Varghese N. , Vivekchand S. R. C. , Govindaraj A. , Rao C. N. R. , Chem. Phys. Lett. , 2008, 450, 340-344.

同被引文献20

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部