期刊文献+

基于铜离子与DNA相互作用的铜离子检测 被引量:9

Detection of Copper Ion Based on the Interaction Between DNA Molecules and Copper Ions
下载PDF
导出
摘要 利用铜离子(Cu^(2+))可与DNA分子中的碱基相互作用形成络合物的性质,将Cu^(2+)富集在DNA修饰电极表面,进而采用微分脉冲伏安法(DPV)实现了铜离子的检测.此外,由于乙二胺四乙酸(EDTA)对Cu^(2+)具有更强的络合能力,富集于DNA修饰电极表面的Cu^(2+)很容易被洗脱液中的EDTA络合,从而实现修饰电极的再生和重复利用.实验结果表明,在最佳实验条件下,Cu^(2+)浓度在2.0×10-6~1.0×10-5mol/L和2.0×10-5~1.0×10-4mol/L范围内与其相对还原峰电流强度(I-I0)呈良好的线性关系,且该传感器简单、稳定,可循环使用. Copper ion( Cu^(2+)) is one of the essential trace elements of human,which plays an important role in life. However,excessive amounts of copper ions may cause serious damage to health. In this work,Cu^(2+)ions were determined by differential pulse voltammetry( DPV) based on its concentration on DNA modified electrode due to the complexation of Cu^(2+)ions with the base of DNA. Furthermore,because ethylenediaminetetraacetic acid( EDTA) shows stronger complexing ability to Cu^(2+)ions than DNA,Cu^(2+)concentrated on DNA modified electrode can be eluted with EDTA. Thus,the modified electrode was reusable. The results showed that under optimum conditions,the relative reduction current( I-I0) was linear with the concentration of copper ions in the range of 2. 0 ×10-6—1. 0×10-5mol / L and 2. 0 ×10-5—1. 0×10-4mol / L. The proposed electrochemical sensor for Cu^(2+)ions was simple,stable and reusable.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2016年第7期1269-1275,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21575085)资助
关键词 DNA修饰电极 电化学传感器 差分脉冲伏安法 铜离子 DNA modified electrode Electrochemical sensor Differential pulse voltammetry Copper ion
  • 相关文献

参考文献34

  • 1Gholivand M. B. , Sohrabi A. , Abbasi S. , Electroanalysis, 2007, 19( 15 ) , 1609-1615.
  • 2Reddy S. A., Reddy K. J., Narayan S. L. , Reddy A. V. , Food Chem. , 2008, 109(3), 654-659.
  • 3Molinos-Senante M. , Hernandez-Sancho F. , Sala-Garrido R. , Water Resour. Manage. , 2013, 27(6 ) , 1797-1808.
  • 4Aguilar F. , Charrondiere U. R. , Dusemund B. , Gahier P. , Gilbert J. , Gott D. M. , Grilli S. , Guertler R. , EFSA J. , 2009, 1089, 1-15.
  • 5Pourreza N. , Hoveizavi R. , Anal. Chim. Acta, 2005, 549( 1 ) , 124-128.
  • 6Atanassova D. , Stefanova V. , Russeva E. , Talanta, 1998, 47(5) , 1237-1243.
  • 7Zhu Y. B. , Inagaki K. , Chiba K. , J. Anal. At. Speetrom. , 2009, 24(9), 1179-1183.
  • 8唐凤霞.基于纳米复合材料检测水体中重金属含量.长沙:湖南大学,2014.
  • 9陈晨.用于重金属离子检测的电化学传感器研究,上海:华东理工大学,2013.
  • 10Chaiyo S. , Chailapakul O. , Sakai T. , Teshima N. , Siangproh W. , Talanta, 2013, 108, 1-6.

二级参考文献40

  • 1王炳祥,沈永淼,沈健,李邨,胡宏纹.中氮茚腈类化合物的合成及其荧光性质的研究[J].化学学报,2004,62(17):1649-1652. 被引量:19
  • 2Zeng L., Miller E. W., Pralle A., Isacoff E. Y., Chang C., J. Am. Chem. Soc., 2006, 128(1), 10-11.
  • 3Que E. L., Domaille D. W., Chang C. J., Chem. Rev., 2008, 108(5), 1517-1549.
  • 4Barnham K. J., Masters C. L., Bush A. I., Nat. Rev. Drug. Discovery, 2004, 3, 205-206.
  • 5Yu P., Dong Y M., Dong M., Wang Y. W., J. Org. Chem., 2012, 77(20), 9072-9080.
  • 6Manoj N., Parduman R. S., Tandeep K., Org. Lett., 2012, 14(1), 406-409.
  • 7Chawla H. M., Goel P., Shukla R., Tetrahedron Lett., 2014, 14, 2173-2176.
  • 8Biswas A., Pandey R., Kushwaha D., Vinod K. T., Arvind M., Daya S. P., Tetrahedron Lett., 2013, 54, 4193-4197.
  • 9Chawla H. M., Richa S., Shubha P., Tetrahedron Lett., 2013, 54, 2063-2066.
  • 10Wu S. P., Wang T. H., Liu S. R., Tetrahedron, 2010, 66, 9655-9658.

共引文献8

同被引文献60

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部