期刊文献+

基于MIP图像拼接系统的大型古生物化石数字化应用研究 被引量:1

LARGE FOSSIL DIGITALIZATION BASED ON THE MOSAIC OF IMAGE PROGRAM(MIP)
原文传递
导出
摘要 在大型古生物化石数字化过程中,为了充分展示化石的细节信息,往往需要拍摄大量的图像。为了实现大型古生物化石数字化数据的完整性,需要对这些大量的图像进行精密的图像拼接处理。基于这种应用需求的前提下,本文在自主研发的Mosaic of Image Program(MIP)图像拼接系统的基础上,对高精度的相机检校、畸变检校及改正和拼接缝的保真处理等方面进行研究,形成系统的古生物化石彩色合成影像数字化流程。在宜州化石馆的实际处理中,完成了杨氏锦州龙、蜥脚类恐龙、孔子鸟等大型古生物化石的数字化,几何失真小于0.36mm(畸变矫正精度优于1像元,拼接精度优于2像元,像片分辨率0.12mm)。同时采用基于SIFT的自动辐射归一化处理算法对拼接影像进行辐射均衡处理,矫正拼接影像辐射亮度的不均衡。 In fossil-digitalization process,a multitude of digital images were captured for exhibiting adequate details of fossils.In order to guarantee the integrity of digital data,high-accurate image stitching needs to be implemented with those images.Thus,for meeting the requirement of large fossil digitalization,we proposed a systematic framework based on the foundation of selfdeveloped Mosaic of Image Program(MIP),including collected camera calibration,distortion correction and image stitching process etc.To validate the correctness and feasibility of our study,the proposed framework was utilized in the digitalization project of Yizhou Fossil Museum.Digitalization data of Jinzhousaurus yangi,sauropod dinosaurs,Dromaeosaurus,Confuciusornis and other large fossils were obtained,and the integrated geometric distortion is less than0.36mm(the accuracy of distortion correction and stitching is better than 1and 2pixel,respectively,with the image resolution of 0.12 mm). With respect to radiometric differences between adjacent images, we employed automatic relative radiometric normalization method with SIFT algorithm to effectively eliminate those radiometric differences.The results of the applied project demonstrate that our framework can address our focusing problems effectively.
出处 《古生物学报》 CSCD 北大核心 2016年第2期244-253,共10页 Acta Palaeontologica Sinica
基金 国土资源知识公众化传播关键技术研究(201011003)项目资助
关键词 大型古生物化石 数字化 MIP图像拼接系统 特征匹配 Large fossil digitalization Mosaic of Image Program feature matching
  • 相关文献

参考文献20

  • 1Beis J S. I.owe D G, 1997. Shape indexing using approximate nearest-neighbour search in high-dimensional spaces. The Proceedings of Computer Vision and Pattern Recognition,IEEE on Computer Society Conference: 1000--1006.
  • 2车静,卢鹏,韩焱,王鉴.仿生复眼视觉系统中全景图拼接算法[J].应用光学,2013,34(5):815-819. 被引量:10
  • 3FengWen—hao(冯文灏).2012.Close-range Photograrnmet ry.Wuhan: Wuhan University Press. 1--225.
  • 4冯文灏,商浩亮,侯文广.影像的数字畸变模型[J].武汉大学学报(信息科学版),2006,31(2):99-103. 被引量:21
  • 5Fischler M A, Bolles R C, 1981. Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24 (6); 381--395.
  • 6黄德志,周长勇,李岩,吕涛,谢韬,张启灿.古生物群遗迹化石的三维数字化测量[J].光学与光电技术,2012,10(2):37-41. 被引量:5
  • 7李寒,牛纪桢,郭禾.基于特征点的全自动无缝图像拼接方法[J].计算机工程与设计,2007,28(9):2083-2085. 被引量:52
  • 8Lowe D G, 1999. Object recognition from local scale-invariant features. The Proceedings of the Seventh IEEE International Conference on Computer Vision,IEEE,2:1150 1157.
  • 9Lowe D G, 2004. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision. 60 ( 2 ) : 91 110.
  • 10Moore A W, 1991. An Introductory Tutorial on Kd trees. Extract from PhD Thesis Tech Report No. 209. Computer I.aboratory, University of Cambridge, Robotics Institute, Carnegie Mellon University,Pittsburgh,PA. 1 159.

二级参考文献81

共引文献213

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部