期刊文献+

PBP驱动器率相关迟滞特性研究及其线性化控制 被引量:5

Research on Rate-dependent Hysteresis Characteristics of PBP Actuators and Its Linearization Control
下载PDF
导出
摘要 后屈曲预压缩压电双晶片(Post-buckling pre-compression,PBP)驱动器作为一种大行程压电舵机驱动器,存在着严重的率相关迟滞现象。为了使PBP驱动器能够作为具有较高控制精度的微小型飞行器舵机驱动器,利用基于Bouc-Wen模型的Hammerstein率相关迟滞模型对其进行参数识别,并通过试验验证了该模型能够较好地预测PBP驱动器的率相关迟滞特性;在此基础上为PBP驱动器设计一种具有在线自适应能力的前馈单神经元PID复合线性化控制器,在多种单复合频率信号作用下对其控制回路进行位移跟踪半实物仿真试验,并与基于径向基函数(Radial basis function,RBF)神经网络PID控制器进行对比,结果表明前馈单神经元PID控制器具有更快的响应速度和更高的控制精度。 As a kind of high displacement piezoelectric bimorph rudder actuator, the post-buckling pre-compression(PBP) actuators have a serious rate-dependent hysteresis phenomenon. In order to make the PBP actuators can be used as micro flight actuators with high control precision, parameter identification is carried out by the Hammerstein rate-dependent model based on Bouc-Wen hysteresis model, the experimental results show that rate-dependent hysteresis of the PBPs can be well predicted by this model. On the above foundation, a composite controller, which consisting of an adaptive single neuron PID and a feedforward controller, is designed for the PBP actuators, and then the displacement tracking hardware-in-loop experiments of control loop under various single and multi-frequency signals are carried out, and compared with the control effect of radial basis function neural net PID controller, the results show that the feedforward and single neuron PID composite controller has relatively faster response speed and relatively higher control precision.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2016年第12期205-212,共8页 Journal of Mechanical Engineering
关键词 PBP驱动器 率相关迟滞 Bouc-Wen迟滞模型 HAMMERSTEIN模型 前馈自适应PID复合控制 神经网络 post-buckling pre-compression(PBP) actuator rate-dependent hysteresis Bouc-Wen hysteresis model Hammerstein model feedforward and adaptive PID composite controller neural net
  • 相关文献

参考文献5

二级参考文献54

  • 1QingqingWang,Chun-YiSu,YonghongTan.On the Control of Plants with Hysteresis: Overview and a Prandtl-Ishlinskii Hysteresis Based Control Approach[J].自动化学报,2005,31(1):92-104. 被引量:5
  • 2MAYERGOYZ I D. Mathematical Models of Hysteresis [M]. New York: Springer-Verlag, 1991.
  • 3GOLDFARB M, CELANOVIC N. Modeling piezoelectric stack ac- tuators for control of micromanipulation [J]. IEEE Control Systems, 1997, 17(3): 69 - 79.
  • 4LIN C, LIN P. Tracking control of a biaxial piezo-actuated position- ing stage using generalized Duhem model [J]. Computers & Mathe- matics with Applications, 2012, 64(5): 766 - 787.
  • 5LIU L, TAN K K, CHEN S, et al. SVD-based Preisach hysteresis identification and composite control ofpiezo actuators [J]. ISA Trans- actions, 2012, 51(3): 430 - 438.
  • 6AL JANAIDEH M, RAKHEJA S, SU C Y. A generalized Prandtl- Ishlinskii model for characterizing rate dependent hysteresis [C] /IlEEE International Conference on Control Applications. Singapore: Institute of Electrical and Electronics Engineers Inc., 2007:343 - 348.
  • 7AL JANAIDEH M, SU C, RAKHEJA S. Compensation of rate- dependent hysteresis nonlinearities in a piezo micro-positioning stage [C]//IEEE International Conference on Robotics and Automa- tion. Anchorage, AK, USA: Institute of Electrical and Electronics En- gineers Inc., 2010:512 - 517.
  • 8PAK-KIN W, XU Q S, VONG C M, et al. Rate-dependent hystere- sis modeling and control of a piezostage using online support vector machine and relevance vector machine [J]. IEEE Transactions on In- dustrial Electronics, 2012, 59(4): 1988 - 2001.
  • 9HU H, GEORGIOU H M S, BEN-MRAD R. Enhancement of track- ing ability in piezoceramic actuators subject to dynamic excitation conditions [J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(2): 230 - 239.
  • 10CROFT D, SHED G, DEVASIA S. Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy applica- tion [J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123(1): 35-43.

共引文献40

同被引文献40

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部