期刊文献+

基于仿真SAR和SVM分类器的目标识别技术研究 被引量:24

Research of Target Recognition Technique via Simulation SAR and SVM Classifier
下载PDF
导出
摘要 SAR图像目标识别具有重要的军事应用价值,是目标自动识别领域中热点方向。传统的基于模板的识别方法随着识别种类的不断增多,其识别速度将不断降低;以基于支持向量机为代表的机器学习等新的识别技术,需要大量的真实SAR图像作为训练样本。针对以上问题,本文提出了一种基于仿真SAR和SVM分类器的目标识别方法。该方法首先通过电磁计算软件获得目标的大量仿真SAR数据构建训练样本集,然后利用样本集训练获得所需的识别分类器。本文通过实验验证了该方法对运输机、地面车辆分类识别的有效性,为SAR图像目标识别的应用推广提供了一条解决途径。 Target recognition of SAR image with important military application value is the key research on automatic target recognition. The computational velocities of conventional recognition method based on template match continually decrease with increasing target types. Novel recognition techniques via machine learning methods such as SVM et. al.,demand massive measured SAR image data. Aiming to solve the aforementioned problems,the target recognition technique via simulation SAR and SVM classifier is proposed. Firstly,the simulation SAR pattern is calculated by the software of electromagnetics to construct the training sample sets. Then,the recognition classifier is obtained based on the training samples.The experimental results of cargo-transport plane and vehicle demonstrate the effectiveness and robustness of the proposed method.
出处 《中国电子科学研究院学报》 北大核心 2016年第3期257-262,共6页 Journal of China Academy of Electronics and Information Technology
关键词 合成孔径雷达 目标识别 仿真SAR 支持向量机 synthetic aperture radar(SAR) target recognition simulation SAR support vector machine
  • 相关文献

参考文献7

  • 1HenriMaitre编.孙洪等译.合成孑L径雷达图像处理[M].北京:电子工业出版社,2005.
  • 2王金泉,李钦富.基于SAR图像的自动目标识别系统设计与实现[J].中国电子科学研究院学报,2012,7(3):279-283. 被引量:5
  • 3David A.E. Morgan BAE Systems, UK. Deep convolu- tional neural networks for ATR from SAR imagery [ C ]. SP1E 2015.
  • 4Yijun Sun, Zhipeng Liu, Sinisa Todorovic, and Jian Li . Synthetic: Aperture Radar automatic target recognition u- sing adaptive boosting[ C]. SPIE 2005.
  • 5缑水平,焦李成,张向荣.基于免疫克隆的核匹配追踪集成图像识别算法[J].模式识别与人工智能,2009,22(1):79-85. 被引量:6
  • 6Gal Mishne, Ronen Talmon, and Israel Cohen. Graph- based supervised automatic target detection [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53 (5) : 2278-2286.
  • 7Christopher .1. C. Burges. A tutorial on support vector machine for pattern recognition [ J ]. Data Mining and Knowledge Discovery, 1998, 2(2) : 121-167.

二级参考文献20

  • 1李国正,杨杰,孔安生,陈念贻.基于聚类算法的选择性神经网络集成[J].复旦学报(自然科学版),2004,43(5):689-691. 被引量:15
  • 2Pascal V, Yoshua B. Kernel Matching Pursuit. Machine Learning, 2002, 48(1/2/3) : 165 -187
  • 3Hansen L K, Salamon P. Neural Network Ensembles. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12 (10 ) : 993 - 1001
  • 4Je H M, Kim D, Yang B S. Human Face Detection in Digital Video Using SVM Ensemble. Neural Processing Letters, 2003, 17 (3) : 239 - 252
  • 5Jiao Licheng, Li Qing. Kernel Matching Pursuit Classifier Ensemble. Pattern Recognition, 2006, 39(4) : 587 -594
  • 6Krogh A, Vedelsby J. Neural Network Ensembles, Cross Validation, and Active Learning//Touretzky D S, Tesauro G, Leen T K, eds. Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 1995, 7:231 -238
  • 7Zhou Zhihua, Wu Jianxin, Tang Wei. Ensembling Neural Networks: Many Could Be Better Than All. Artificial Intelligence, 2002, 137(1) : 239 -263
  • 8Granitto P M, Verdes P F, Ceccatto H A. Neural Network Ensembles: Evaluation of Aggregation Algorithms. Artificial Intelligence, 2005, 163(2): 139-162
  • 9Mallat S, Zhang Z. Matching Pursuit with Time-Frequency Dictionaries. IEEE Trans on Signal Processing, 1993, 41 (12): 3397 - 3415
  • 10Tumer K, Ghosh J. Error Correlation and Error Reduction in Ensemble Classifiers. Connection Science, 1996, 8 (3) : 385 - 404

共引文献8

同被引文献108

引证文献24

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部