期刊文献+

改进gbest引导的人工蜂群算法

Improving gbest-guided Artificial Bee Colony Algorithm
下载PDF
导出
摘要 为了进一步提高人工蜂群算法的性能,做了两点改进:(1)侦查蜂阶段采用混沌反向初始化的方式;(2)改进算法自动检测全局最优解停滞并给予高斯扰动,这样可以增强算法的进化能力。在6个标准测试函数上的实验表明,改进算法的性能优于人工蜂群算法和全局最优解引导的蜂群算法。 In order to further improve the performance of Artificial Bee Colony(ABC) algorithm, makes 2 improvement as follows:(1) a new chaos and opposition initialization strategy is applied in scout bee phase;(2)the proposed algorithm can automatically find out the stagnation of the global best solution and perturb it using Gaussian random number, which can enhance the performance of the algorithm. Experimental on 6 benchmark functions show that the proposed algorithm outperform ABC and gbest-guided ABC algorithm.
作者 杜振鑫
出处 《现代计算机(中旬刊)》 2016年第6期45-47,共3页 Modern Computer
关键词 人工蜂群算法 最优解 扰动 初始化 Artificial Bee Colony Algorithm Global Best Solution Pertabation Initialization
  • 相关文献

参考文献4

  • 1Karahoga D, Basturk B. A Powerul and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony(ABC Algo- rithm[J]. Journal of Global Optimization, 2007,39 (3): 459-471.
  • 2Zhu C, uopu,Kwong S. gbest-Guided Artificial Bee Colony Algorithm for Numerical Function Optimization. Applied Mathematics and Computation,2010,217(7) : 3166-3173.
  • 3Tizhoosh,H R.Opposition-Based Learning: a New Scheme for Machine Intelligence[C]. Proc. of International Conference on Comp. In- tell. for Modeling, Control and Automation. Vienna,Austria:lEEE Press ,2005.
  • 4Alatas B. Chaotic Bee Colony Algorithms for Global Numerical Optimization[J]. Expert Systems with Applications, 2010,37 (8): 5682- 5687.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部