期刊文献+

一种基于结构稀疏度的图像块分类方法 被引量:1

An Image Patch Classification Method Based on Structure Sparsity
下载PDF
导出
摘要 在传统的图像块分类方法中,利用局部方差可以将图像块划分为平滑块和非平滑块,但是对于非平滑块中包含的边缘块和纹理块,则不能有效进行区分。针对这一问题,提出一种基于结构稀疏度的图像块分类方法,根据图像块与其邻域的其余图像块之间的相似程度对图像块的局部特征进行辨识。仿真实验结果表明,该方法可以对平滑块、边缘块,以及纹理块进行有效区分。 In the traditional image patch classification method, the image patches can be divided into smooth patch and non-smooth patch using the local variance. However, for the non-smooth patch, the edge patch and texture patch cannot be distinguished effectively. In view of this problem, proposes an image patch classification method based on structure sparsity. The local features of image patches are identified according to the similarity between the current image patch and the rest of the image patches in its neighborhood. Simulation experiment results show that the method can distinguish the smooth patch, the edge patch, and the texture patch effectively.
作者 程妮
出处 《现代计算机(中旬刊)》 2016年第6期71-74,共4页 Modern Computer
基金 2014年运城学院教学改革项目(No.JG201429) 2016年运城学院教学改革项目(No.JG201628)
关键词 结构稀疏度 相似度 图像块 分类 Structure Sparsity Similarity Image Patch Classification
  • 相关文献

参考文献9

  • 1Guillemot C., Le Meur O.. hnage Inpainting: Overview and Recent Advances [J]. IEEE Signal Processing Magazine, 2014, 31 (1):127- 144.
  • 2杨春玲,何流,魏毅,麦智毅.基于图像块分类的加权结构相似度[J].华南理工大学学报(自然科学版),2009,37(1):42-47. 被引量:3
  • 3Dong W., Zhang 1,., Shi G., et al. Image Deb|un'ing and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regu- larization [J]. IEEE Trans. Image Process, 2011, 20(7):1838-1857.
  • 4Kokare M, Chatterji B N, Biswas P K. A Survey on Current Content based Image Retrieval Methods [J]. IETE Journal of Research, 2015,48(3-4):261-271.
  • 5Jiang Y, Wang M. hnage Fusion with Morphological Component Analysis[J]. Information Fusion, 2014, 18(7):107-118.
  • 6Wu J, Cui Z, Sheng V S, et al. Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition[J]. Scientific World Journal 2014, 2014(1): 149-168.
  • 7Zhang C., Wang S., Huang Q., et al. hnage Classification Using Spatial Pyramid Robust Sparse Coding[J]. Pattern Reeognition Let- ters, 2013, 34(9): 1046-1052.
  • 8Znngben X, Jian S. Image Inpaintlng by Patch Propagation Using Patch Sparsily [J]. IEEE Transactions on hnage Processing A Publi- cation of the IEEE Signal Processing Society, 2010,19(5):1153-1165.
  • 9李志丹,和红杰,尹忠科,陈帆,仁青诺布.基于块结构稀疏度的自适应图像修复算法[J].电子学报,2013,41(3):549-554. 被引量:45

二级参考文献24

  • 1陆旭光,汪岳峰,胡文刚,潘攀.基于视觉感兴趣区的图像质量评价方法[J].微计算机信息,2005,21(10X):95-96. 被引量:16
  • 2Eskicioglu A M, Fisher P S. Image quality measures and their performance [ J ]. IEEE Trans on Communications, 1995,43(12) :2959-2965.
  • 3Wang Zhou, Bovik A C, Sheikh H R. Image quality assessment : from error visibility to structural similarity [ J ]. IEEE Transactions on Image Processing, 2004, 13 ( 4 ) : 600-612.
  • 4Wang Zhou, Shang Xin-li. Spatial pooling strategies for perceptual image quality assessment [C]//Proe of IEEE Int Conf on Image Proc. Atlanta: IEEE,2006:2945-2948.
  • 5Koumaras Harilaos, Pliakas Thomas, Kourtis Anastasios. A novel method for pre-encoding video quality prediction [ J ]. Mobile and Wireless Communications Summit,2007,1(5) :1-4.
  • 6Kalpana Seshadrinathan, Boivk A C. A structural similarity metric for video based on motion models [ C ] //Proc of IEEE International Conference on Acoustics, Speech and Signal Processing. Honolulu : IEEE, 2007 : 869- 872.
  • 7Wang Zhou, Watson A B, Sheikh H R. Image and video quality assessment research at LIVE [ EB/OL]. [ 2007- 11-03 ]. hnp://live. ece. utexas. edu/research/quality/.
  • 8Video Quality Experts Group. Final report from the video quality experts group on the validation of objective models of video quality assessment [ EB/OL ]. [ 2000- 03- 05 ]. http ://www. vqeg. org/.
  • 9杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 10Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[A]. Proceedings of ACM SIGGRAPH [ C ]. New Orleans: ACM Press, 2000.417 - 424.

共引文献46

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部