期刊文献+

基于缓变特征学习的判别有序回归 被引量:1

Slow Feature Learning Discriminant for Ordinal Regression
下载PDF
导出
摘要 有序回归是一种重要的机器学习范式,其目标是针对输出离散且有序的数据建立一个回归器以预测相应有序输出或离散类标。尽管现有的有序回归方法通过利用此类先验有序信息获得了比一般方法更优的性能。但是,并没有考虑缓变学习准则与有序回归的结合。本文通过缓变学习准则对每个样本类构建多个类内时间序列计算缓变类内散度矩阵,然后在有序约束条件的基础上根据线性判别准则寻找最佳投影进行有序映射,提出一种新的基于缓变特征学习的判别有序回归方法(Slow Feature Learning Discriminant for Ordinal Regression,SFLDOR)。通过在8个标准有序回归数据集上的对比实验表明,本算法在回归和分类性能上均优于使用普通类内散度矩阵的算法。 Ordinal regression is an important machine learning paradigm whose purpose is to predict the ordinal outputs or discrete labels by establishing an ordinal regressor .Many ordinal regression algorithms have been proposed with a better performance by u-sing this prior ordinal information .However , they do not consider the combination of slowness principle and ordinal regression . This paper first characterizes the slowness within-class scatter matrix with a number of within-class time series , and then establi-shes a slow feature learning discriminant for ordinal regression ( SFLDOR) by combining the matrix with an ordinal restriction . The experimental results with the eight standard ordinal regression data sets demonstrate that SFLDOR has a better regression and classification performance than the algorithm with general within-class scatter matrix .
作者 李亚克 高航
出处 《计算机与现代化》 2016年第7期24-27,32,共5页 Computer and Modernization
关键词 有序回归 缓变学习准则 时间序列 线性判别 缓变类内散度矩阵 ordinal regression slow learning principle time series linear discriminant slowness within-class scatter matrix
  • 相关文献

参考文献22

  • 1Herbrich R, Graepel T, Obermayer K. Support vector learn- ing for ordinal regression[ C]//The 9th International Con- ference on Artificial Neural Networks. 1999:97-102.
  • 2Wu Hong, Lu Hanqing, Ma Songde. A practical SVM-based algorithm for ordinal regression in image retrieval [ C ]// Proceedings of the 1 l th ACM International Conference on Multimedia. 2003:612-621.
  • 3Zhang Daoqiang, Wang Yaping, Zhou Luping, et al. Mul- timodal classification of Alzheimer' s disease and mild cog- nitive impairment [J]. Neuroimage, 2011,55 (3) : 856- 867.
  • 4Chang K Y, Chen C S, Hung Y P. A ranking approach for human ages estimation based on face images [ C ]// 2010 20th International Conference on Pattern Recognition (ICPR). 2010:3396-3399.
  • 5Chang K Y, Chen C S, Hung Y P. Ordinal hyperplanes ranker with cost sensitivities for age estimation[ C]//2011 IEEE Conference on Computer Vision and Pattern Recogni- tion (CVPR). 2011:585-592.
  • 6Kramer S, Widmer G, Pfahringer B, et al. Prediction of ordinal classes using regression trees[ C ]//Proceedings of the 12th International Symposium on Foundations of Intelli- gent Systems. 2000:426-434.
  • 7Frank E, Hall M. A simple approach to ordinal classifica- tion [ C ]//Proceedings of the 12th European Conference on Machine Learning. 2001 : 145-156.
  • 8Cardoso J S, Da Costa J F P. Learning to classify ordinal data: The data replication method [ J ]. Journal of Machine Learning Research, 2007, 8(8) : 1393-1429.
  • 9Shashua A, Levin A. Ranking with large margin principle: Two approaches [ C ]// Advances in Neural Information Processing Systems. 2002:937-944.
  • 10Sun Bingyu, Li Jiuyong, Wu D D, et al. Kernel discrimi- nant learning for ordinal regression[ J ]. IEEE Transactions on Knowledge and Data Engineering, 2010,22 (6) : 906- 910.

二级参考文献18

  • 1Herbrich R, Graepel T, Obermayer K. Large margin rank boundaries for ordinal regression[M]//Advances in Large Margin Classifiers. Cambridge, MA, USA: MIT Press, 2000: 115-132.
  • 2Chu W, Keerthi S S. New approaches to support vector ordinal regression[C]//Proceedings of the 22nd International Con- ference on Machine Learning (ICML '05). New York, NY, USA: ACM, 2005: 145-152.
  • 3Kramer S, Widmer G, Pfahringer B, et al. Prediction of ordinal classes using regression trees[J]. Fundamenta Informaticae, 2001, 47(1): 1-13.
  • 4Frank E, Hall M. 2001. A simple approach to ordinal classi-fication[C]//LNCS 2167: Proceedings of the 12th European Conference on Machine Learning (ECML '01), Freiburg, Germany, Sep 5-7, 2001. Berlin, Heidelberg: Springer-Verlag, 2001: 145-156.
  • 5Waegeman W, Boullart L. An ensemble of weighted support vector machines for ordinal regression[J]. Transactions on Engineering, Computing and Technology, 2006, 12:71-75.
  • 6Cardoso J S, Da Costa J F P. Learning to classify ordinal data: the data replication method[J]. The Journal of Machine Learning Research, 2007, 8(7): 1393-1429.
  • 7Shashua A, Levin A. Ranking with large margin principle: two approaches[C]//Proceedings of the Conference on Neural Information Processing Systems. Cambridge, M_A, USA: MIT Press, 2003: 961-968.
  • 8Sun Bingyu, Li Jiuyong, Wu Desheng D, et al. Kernel discrim- inant learning for ordinal regression[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(6): 906-910.
  • 9Liu Yang, Liu Yan, Chan K C C. Ordinal regression via manifold learning[C]//Proceedings of the 25th AAAI Con- ference on Artificial Intelligence (AAAI ' 11), San Francisco, USA, Augt 7-11, 2011.Menlo Park, CA, USA: AAAI, 2011: 398-403.
  • 10Cover T, Hart E Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.

共引文献1

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部