期刊文献+

基于SVM的降维方法在三类ROC分析中的应用 被引量:5

Dimension Reduction Method Applying in Three-class ROC Analysis Based on SVM
下载PDF
导出
摘要 ROC分析方法已在各个领域有了广泛的应用,但主要应用于两类问题。在三类问题的推广上面临着分析空间高维化,难以理解,表示困难,计算复杂度高等问题。本文基于SVM(支持向量机)分类方法,提出一种新的降维方法,并运用到三类ROC分析中,在避免了上述不足的同时,也继承了ROC分析方法在两类问题中的优点。 ROC( Receiver Operating Characteristic ) analysis method has been widely used in various fields , but it is mainly ap-plied to two-class task.In the three-class task, it is difficult to show and understand , and the computation complexity is hardly to accept .This paper proposes a new dimension reduction method , which is based on SVM ( Support Vector Machine ) classifier , to exploit the ROC analysis method in three-class task, which avoids the above problems and inherits the advantages of ROC analysis method in two-class task.
出处 《计算机与现代化》 2016年第7期49-54,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(61271380) 广东省自然科学基金资助项目(S2012010009870 1414050001980)
关键词 支持向量机 降维 ROC VUS ROC VUS dimension reduction ROC VUS
  • 相关文献

参考文献15

  • 1Mann H B, Whitney D R. On a test of whether one of two random variables is stochastically larger than the other[ J ]. The Annals of Mathematical Statistics, 1947,18 ( 1 ) :50- 60.
  • 2Gibbons J D, Chakraborti S. Nonparametric Statistical In- ference [ M ]. Springer Berlin Heidelberg, 2011.
  • 3Cortes C, Vapnik V. Support-vector networks [ J ]. Machine Learning, 1995,20(3) :273-297.
  • 4He X, Metz C E, Tsui B M W, et al. Three-class ROC a- nalysis-A decision theoretic approach under the ideal ob- server framework[ J]. IEEE Transactions on Medical Ima- ging, 2006,25(5) :571-581.
  • 5He X, Frey E C. Three-class ROC analysis the equal error utility assumption and the optimality of three-class ROC surface using the ideal observer[ J]. IEEE Transactions on Medical Imaging, 2006,25 (8) :979-986.
  • 6He X, Frey E C. The meaning and use of the volume under a three-class ROC surface (VUS) [ J ]. IEEE Transactions on Medical Imaging, 2008,27 ( 5 ) :577-588.
  • 7He X, Frey E C. An optimal three-class linear observer derived from decision theory [ J ]. IEEE Transactions on Medical Imaging, 2007,26( 1 ) :77-83.
  • 8Dreiseitl S, Ohno-Machado L, Binder M. Comparing three- class diagnostic tests by three way ROC analysis[J]. Medical Decision Making, 2000,20(3) :323-331.
  • 9. Green D M, Swets J A. Signal Detection Theory and Psy- chophysics [ M ]. Huntington, New York: Robert E. Krieg- er Publishing Company, 1973.
  • 10Bamber D. The area above the ordinal dominance graph and the area below the receiver operating character istic graph[ J ]. Journal of Mathematical Psychology, 1975,12 (4) :387-415.

二级参考文献21

  • 1宋枫溪,高林.文本分类器性能评估指标[J].计算机工程,2004,30(13):107-109. 被引量:33
  • 2程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 3杨波,程泽凯,秦锋.用AUC评估分类器的预测性能[J].情报学报,2007,26(2):275-279. 被引量:2
  • 4Fawcett T. Roc Graphs: Notes and Practical Consideratiom for Researchers[ R]. Palo Alto, CA: HP Laboratories, 2004.
  • 5Bradley A P. The use of the area under the ROC curve in the evaluation of machine learning algorithms[J ]. Pattern Recognition Society, 1997,30:1145 - 1159.
  • 6Bohanec M.UCI [DB/OL]. 1997 -06 -01. hrtp://www.its. uci. edu/mleam/MLRepository. Html.
  • 7Provost F, Fawcett T. Analysis and Visualization of Classifier Performance: Comparison Under Imprecise Class and Cost Distributions[C]//In Proe. Third Intl. Conf, Knowledge Discovery and Data Mining (KDD - 97). Menlo Park, CA. AAAI Press, 1997-43 - 48.
  • 8Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.
  • 9Tan PangNing,Steinbach M,Kumar V.Introduction to Data Mining[M].[s.l.]:Addison Wesley,2005.
  • 10Bradley A P.The use of the area under the ROC curve in the evaluation of machine learning algorithms[J].Pattern Recognition,1997,30:1145-1159.

共引文献57

同被引文献50

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部