期刊文献+

基于支持向量机的咳嗽自动识别

Automatic Recognition of Cough Based on Support Vector Machine
下载PDF
导出
摘要 为了进一步改善咳嗽自动识别的效果,本文以支持向量机作为咳嗽识别的分类模型,详细介绍样本采集、MFCC特征参数提取和支持向量机咳嗽识别的实现过程,并与隐马尔可夫模型和动态时间规划的识别结果及运行时间进行比较。实验结果表明在识别率方面,当训练样本集较大时,支持向量机与隐马尔可夫模型的识别结果相近且优于动态时间规划;当训练样本集较小时,支持向量机的识别率最高。在训练和识别效率方面,支持向量机具有明显的优势。 To further improve the effect of cough automatic identification , support vector machine is adopted as classification mod-el for cough recognition .The process of sample collection , MFCC feature extraction and support vector machine cough recognition is introduced in detail , and the results are compared with hidden Markov model and dynamic time warping .Experiment results show that, with a big training sample set , recognition rates of support vector machine are similar with hidden Markov model and higher than dynamic time warping , while with a small training sample set , support vector machine achieves the best result .In terms of efficiency of the algorithm , support vector machine significantly outperforms the other two classification models in both training and recognition time .
作者 朱春媚 黎萍
出处 《计算机与现代化》 2016年第7期111-114,共4页 Computer and Modernization
基金 中山市科技计划项目(2014A2FC383)
关键词 咳嗽识别 支持向量机 特征提取 隐马尔可夫模型 cough recognition support vector machine feature extraction hidden Markov model
  • 相关文献

参考文献16

  • 1Yousaf N, Monteiro W, Matos S, et al. Cough frequency in health and disease [ J ]. European Respiratory Journal, 2013,41(1) :241-243.
  • 2Drugman T, Urbain J, Banwens N, et al. Objective study of sensor relevance for automatic cough detection [ J ]. IEEE Journal of Biomedical and Health Informatics, 2013, 17(3) :699-707.
  • 3Bitting S S, Fleming T, Mates S, et al. The Leicester cough monitor: Preliminary validation of an automated cough detec- tion system in chronic cough[ J ]. European Respiratory Jour- nal, 2008,31(5) :1013-1018.
  • 4Wilhelm F H, Roth W T, Sackner M A. The lifeshirt an advanced system for ambulatory measurement of respiratory and cardiac function[ J ]. Behavior Modification, 2003,27 (5) :671-691.
  • 5Hollier C A, Harmer A R, Maxwell L J, et al. Validation of respiratory inductive plethysmography (LifeShirt) in o- besity hypoventilation syndrome [ J ]. Respiratory Physiolo- gy & Neurobiology, 2014,194( 1 ) :15-22.
  • 6Smith J A, Earls J E, Woodcock A A. Establishing a gold standard for manual cough counting: Video versus digital audio recordings [ J ]. Cough, 2006,2 ( 1 ) :6.
  • 7Smith J. Monitoring chronic cough: Current and future tech- niques [ J ]. Expert Review of Respiratory Medicine, 2010,4(5) :673-683.
  • 8Amoh J, Odame K. Technologies for developing ambulatory cough monitoring devices [ J ]. Critical ReviewsTM in Bio- medical Engineering, 2014,41 (6) :457-468.
  • 9石锐,王博,何庆华.基于高斯混合模型的咳嗽音检测方法[J].计算机工程与应用,2011,47(32):151-154. 被引量:9
  • 10尹永,莫鸿强.采用Mel倒谱参数的咳嗽声识别方法[J].信息技术,2012,36(10):85-91. 被引量:2

二级参考文献23

  • 1Korpas J, Sadlonova J, Vrabec M.Analysis of the cough sound: an overview[J].Pulmonary Pharmacology, 1996,9 (5/6) : 261-268.
  • 2Hsu J Y, Stone R A, Logan-Sinclair R B, et al.Coughing fre- quency in patients with persistent cough: assessment using a 24 hour ambulatory recorder[J].European Respiratory Journal, 1994,7(7) : 1246-1253.
  • 3Chung K F.Measurement of cough[J].Respiratory Physiology & Neurobiology, 2006,152 (3) : 329-339.
  • 4Matos S,Birring S S,Pavord I D,et al.Detection of cough sig- nals in continuous audio recordings using hidden Markov mod- els[J].IEEE Transactions on Biomedical Engineering, 2006, 53 (6) .. 1078-1083.
  • 5Shin S H, Hashimoto T, Hatano S.Automatic detection system for cough sounds as a symptom of abnormal health condition[J]. IEEE Transaction on Information Technology In Biomedicine, 2009,13 (4) : 486-493.
  • 6Jain A K, Duin R P W, Mao J.Statistical pattern recognition: a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22 ( 1 ) : 4-37.
  • 7Reynolds D A,Rose R C.Robust text-independent speaker identi- fication using gaussian mixture speaker models[J].IEEE Transac- tions on Speech and Audio Processing, 1995,3 ( 1 ) : 72-83.
  • 8Quatieri T F.离散时间语音信号处理-原理与应用[M].赵胜辉,译.北京:电子工业出版社,2004:504-512.
  • 9KORPAS J,SADLONONA J,VRABEC M.Analysis of the coughsound:an overview[J].Pulm Pharmacol,1996,9:261-268.
  • 10VAN HIRTUM A,BERCKMANS D.Assessing the sound of coughtowards vocality[J].Med Engng Phys,2004,24:535-540.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部