期刊文献+

带有Beddington-DeAngelis类型功能反应函数的种群模型分析

Analysis of a Population Model with Beddington-De Angelis Type Functional Response Function
下载PDF
导出
摘要 研究了一类疾病在捕食者种群中传播的带有Beddington-DeAngelis类型功能反应函数的捕食-被捕食模型,并得到了模型存在无病平衡点和正平衡点的条件。 A predator-prey model which took into account the spread of disease in the predator population with Beddington-De Angelis type functional response function was discussed. The conditions of existence of the disease-free equilibrium and the positive equilibrium for the model were derived.
作者 李爽 王小攀
出处 《新乡学院学报》 2016年第6期1-3,共3页 Journal of Xinxiang University
基金 河南省教育厅科学技术研究重点项目(14A110019) 河南师范大学博士科研启动基金项目(qd13043)
关键词 捕食-被捕食系统 Beddington-DeAngelis类型功能反应函数 平衡点 the predator-prey system Beddington-De Angelis type functional response function equilibrium
  • 相关文献

参考文献8

  • 1BEDDINGTON J R. Mutual Interference Between Parasites or Predators and Its Effect on Searching Efficiency[J]. Journal of Animal Ecology, 1975, 44: 331- 340.
  • 2DEANGELIS D L, GOLDSTEIN A H, O'NEILL1 R V. A Model for Trophic Interaction[Jl. Ecology, 1975, 56(4): 881-892.
  • 3LI H Y, TAKEUCHI Y. Dynamies of the Density Depen- dent Predator-prey System with Beddington-DeAngelis Functional Response[J]. Journal of Mathematical Analysis and Applications, 2011, 374(2): 644-654.
  • 4李海银.具有密度制约和Beddington-DeAngelis功能反应函数的周期捕食-被捕食系统的持久性[J].应用数学学报,2014,37(5):895-911. 被引量:1
  • 5臧彦超,李俊平.带Beddington-DeAngelis功能反应和Levy噪声的随机捕食-被捕食系统的渐近性质[J].应用数学学报,2015,38(2):340-349. 被引量:5
  • 6CHATrOPADHYAY J, ARINO O. A Predator-prey Model with Disease in the Prey[J]. Nonlinear Analysis, 1999, 36: 749-766.
  • 7DAS K P. A Study of Chaotic Dynamics and Its Possible Control in a Predator-prey Model with Disease in the Predator[J]. Journal of Dynamical and Control Systems, 2015, 21(4): 605-624.
  • 8BISWAS S, SASMAL S K, SAMANTA S, et al. A Delayed Eco-epidemiological System with Infected Prey and Predator Subject to the Weak Allee Effect[J]. Mathemat- ical Biosciences, 2015, 263: 198-208.

二级参考文献13

  • 1Yagi A, Ton T V. Dynamic of a stochastic predator-prey population. Applied Mathematics and Computation, 2011, 218(7): 3100-3109.
  • 2Cantrell R S, Cosner C. On the dynamics of predator-prey models with the Beddington-DeAngelis functional response. Journal of Mathematical Analysis and Applications, 2001, 257(1): 206-222.
  • 3Chen F D, You M. Permanence, extinction and periodic solution of the predator-prey system with Beddington-DeAngelis functional response and stage structure for prey. Nonlinear Analysis: Real World Applications, 2008, 9(2): 207-221.
  • 4Liu S Q, Zhang J H. Coexistence and stability of predator-prey model with Beddington-DeAnelis functional response and stage structure. Journal of Mathematical Analysis and Applications, 2008, 342(1): 446-460.
  • 5Liu Z H, Yuan R. Stability and bifurcation in a delayed predator-prey system with Beddington?DeAnelis functional response. Journal of Mathematical Analysis and Applications, 2004, 296(2): 521-537.
  • 6Ji C Y, Jiang D Q, Shi N Z. Analysis of a predator-prey model with modified Leslie-Gower and Holling?type II schemes with stochastic perturbation. Journal of Mathematical Analysis and Applications, 2009, 359(2): 482-498.
  • 7Ji C Y, Jiang D Q. Dynamics of stochastic density dependent predator-prey system with Beddington?DeAngelis functional response. Journal of Mathematical Analysis and Applications, 2011, 381: 441-453.
  • 8Qiu H, Liu M, Wang K, Wang Y. Dynamics of a stochastic predator-prey system with Beddington?DeAngelis functional response. Applied Mathematics and Computation, 2012, 219(4): 2303-2312.
  • 9Bao J H, Yuan C G. Stochastic population dynamics driven by Levy noise. Journal of Mathematical Analysis and Applications, 2012, 391(2): 363-375.
  • 10Bao J H, Mao X R, Yin G, Yuan C G. Competitive Lotka- Volterra population dynamics with jumps. Nonlinear Analysis: Theory, Methods and Applications, 2011, 74 (17): 6601-6616.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部