摘要
输入非线性系统包括输入非线性方程误差类系统和输入非线性输出误差类系统.针对输入非线性输出误差自回归系统,分别基于过参数化模型,基于关键项分离原理,基于数据滤波技术,研究了相应的基于过参数化模型的辅助模型递推辨识方法、基于关键项分离的辅助模型递推辨识方法、基于数据滤波的辅助模型递推辨识方法.这些方法可以推广到其他输入非线性输出误差系统、输出非线性输出误差系统、反馈非线性系统等.并给出了几个典型辨识算法的计算步骤、流程图和计算量.
The input nonlinear systems include the input nonlinear equation-error type systems and the input nonlinear output-error type systems.According to the over-parameterization model,the key term separation and the data filtering, this paper studies and presents the over-parameterization model based auxiliary model recursive identification (AM-RI) methods, the key term separation based AM-RI methods and the data filtering based AM-RI methods for input nonlinear output-error autoregressive systems.These methods can be extended to other input nonlinear output-error systems, output nonlinear output-error type systems and feedback nonlinear systems.Finally, the computational efficiency, the computational steps and the flowcharts of several typical identification algorithms are discussed.
出处
《南京信息工程大学学报(自然科学版)》
CAS
2016年第3期193-214,共22页
Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金
国家自然科学基金(61273194)
江苏省自然科学基金(BK2012549)
高等学校学科创新引智"111计划"(B12018)
关键词
参数估计
递推辨识
梯度搜索
最小二乘
过参数化模型
关键项分离
滤波技术
模型分解
辅助模型辨识思想
递阶辨识原理
输入非线性系统
输出非线性系统
parameter estimation
recursive identification
gradient search
least squares
over-parameterization model
key term separation
filtering technique
model decomposition
auxiliary model identification ideal
hierarchical identification principle
input nonlinear system
output nonlinear system