期刊文献+

辅助模型辨识方法(3):输入非线性输出误差自回归系统 被引量:3

Auxiliary model based identification methods.Part C:Input nonlinear output-error autoregressive systems
下载PDF
导出
摘要 输入非线性系统包括输入非线性方程误差类系统和输入非线性输出误差类系统.针对输入非线性输出误差自回归系统,分别基于过参数化模型,基于关键项分离原理,基于数据滤波技术,研究了相应的基于过参数化模型的辅助模型递推辨识方法、基于关键项分离的辅助模型递推辨识方法、基于数据滤波的辅助模型递推辨识方法.这些方法可以推广到其他输入非线性输出误差系统、输出非线性输出误差系统、反馈非线性系统等.并给出了几个典型辨识算法的计算步骤、流程图和计算量. The input nonlinear systems include the input nonlinear equation-error type systems and the input nonlinear output-error type systems.According to the over-parameterization model,the key term separation and the data filtering, this paper studies and presents the over-parameterization model based auxiliary model recursive identification (AM-RI) methods, the key term separation based AM-RI methods and the data filtering based AM-RI methods for input nonlinear output-error autoregressive systems.These methods can be extended to other input nonlinear output-error systems, output nonlinear output-error type systems and feedback nonlinear systems.Finally, the computational efficiency, the computational steps and the flowcharts of several typical identification algorithms are discussed.
作者 丁锋 毛亚文
出处 《南京信息工程大学学报(自然科学版)》 CAS 2016年第3期193-214,共22页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(61273194) 江苏省自然科学基金(BK2012549) 高等学校学科创新引智"111计划"(B12018)
关键词 参数估计 递推辨识 梯度搜索 最小二乘 过参数化模型 关键项分离 滤波技术 模型分解 辅助模型辨识思想 递阶辨识原理 输入非线性系统 输出非线性系统 parameter estimation recursive identification gradient search least squares over-parameterization model key term separation filtering technique model decomposition auxiliary model identification ideal hierarchical identification principle input nonlinear system output nonlinear system
  • 相关文献

参考文献52

  • 1DING Feng. System identification: New theory and methods [M].Beijing : Science Press, 2013.
  • 2DING Feng. System identification: Performance analysis for identification methods [ M ]. Beijing: Science Press ,2014.
  • 3DING Feng. System identification : Multi-innovation iden- tification theory and methods [ M ]. Beijing: Science Press ,2016.
  • 4丁锋,郭兰杰.线性参数系统的多新息辨识方法[J].南京信息工程大学学报(自然科学版),2015,7(4):289-312. 被引量:6
  • 5DING Feng, GUO Lanjie. Multi-innovation identification methods for linear-parameter systems [ J ]. Journal of Nan- jing University of Information Science and Technology (Natural Science Edition) ,2015,7(4) :289-312.
  • 6丁锋,陈慧波.输入非线性方程误差系统的多新息辨识方法[J].南京信息工程大学学报(自然科学版),2015,7(2):97-124. 被引量:6
  • 7DING Feng, CHEN Huibo. Multi-innovation identification methods for input nonlinear equation-error systems [ J ]. Journal of Nanjing University of Information Science and Technology ( Natural Science Edition ), 2015, 7 ( 2 ) : 97-124.
  • 8丁锋,毛亚文.输入非线性方程误差自回归系统的多新息辨识方法[J].南京信息工程大学学报(自然科学版),2015,7(1):1-23. 被引量:9
  • 9DING Feng, MAO Yawen. Multi-innovation identification methods for input nonlinear equation-error autoregressive systems[J] .Journal of Nanjing University of Information Science and Technology (Natural Science Edition ), 2015,7(1) :1-23.
  • 10丁锋,陈启佳.输出非线性方程误差类系统递推最小二乘辨识方法[J].南京信息工程大学学报(自然科学版),2015,7(3):193-213. 被引量:5

二级参考文献220

共引文献35

同被引文献51

  • 1丁锋.多变量系统的辅助模型辨识方法的收敛性分析[J].控制理论与应用,1997,14(2):192-200. 被引量:28
  • 2Ding F, Chen T. Combined parameter and output estimation of dual-rate systems using an auxiliary model [ J ] .Automatica,2004,40(10) : 1739-1748.
  • 3Ding F, Chen T. Parameter estimation of dual-rate sto- chastic systems by using an output error method [ J ]. IEEE Transactions on Automatic Control, 2005,50 (9) : 1436-1441.
  • 4Liu Y J, Xiao Y S, Zhao X L. Muhi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model [ J ]. Applied Mathematics and Computation,2009,215(4) :1477-1483.
  • 5Xiang L L,Xie L B,Ding R F.Hierarchical least squares algorithms for single-input multiple-output systems based on the auxiliary model [ J ]. Mathematical and Computer Modelling,2010,52 (5/6) :918-924.
  • 6Wang D Q. Least squares-based recursive and iterative estimation for output error moving average systems usingdata filtering [J ]. IET Control theory and Applications, 2011,5(14) : 1648-1657.
  • 7Han H Q,Song G L,Xiao Y S,et al.Performance analysis of the AM-SG parameter estimation for multivariable sys- tems[J]. Applied Mathematics and Computation, 2011, 217(12) :5566-5572.
  • 8Zhang Z N, Jia J, Ding R F. Hierarchical least squares based iterative estimation algorithm for multivariable Box-Jenkins-like systems using the auxiliary model [ J ]. Applied Mathematical Computation, 2012, 218 (9): 5580-5587.
  • 9Xie L,Yang H Z.Interaetive parameter estimation for out- put error moving average systems [ J ].Transactions of the Institute of Measurement and Control, 2013, 35 ( 1 ) : 34-43.
  • 10Zhang W G. Decomposition based least squares iterative estimation for output error moving average systems [ J ].Engineering Computations,2014,31 (4) :709-725.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部