期刊文献+

比例风险模型下参数估计的两种MM算法的一些应用 被引量:4

Some Applications of Two Minorization-Maximization Algorithms for the Maximum Likelihood Estimator under the Proportional Hazards Model
原文传递
导出
摘要 对于带有删失机制的生存数据的研究,比例风险模型是应用最为广泛的统计模型之一。实际中,为得到其参数的极大似然估计需要采用数值方法计算得分方程的解。MinorizationMaximization算法(以下简称"MM算法")将求解复杂的目标函数的极值问题转化为求解简单的代理函数的极值问题。本文主要探讨,在比例风险模型下通过两种不同的思想为偏似然函数构造代理函数,从而得到的两种MM算法。通过数值模拟和实际数据分析实现这两种MM算法在比例风险模型下的一些应用。 The proportional hazards model has been widely used to study survival data with censoring.In practice, numerical methods are required for the calculation of the maximum likelihood estimators ofthe regression parameter. More and more researches and applications on the minorization-maximizationalgorithm (MM algorithm) have been widely developed due to the stability of the algorithm. The key ofthe MM algorithm is to transfer the optimization to a surrogate function. This paper studies two MMalgorithms by building different surrogate functions for the likelihood of the proportional hazards model.The simulation studies are conducted and real data sets are analyzed to study applications of these twoMM algorithms to the proportional hazards model.
出处 《数理统计与管理》 CSSCI 北大核心 2016年第4期649-661,共13页 Journal of Applied Statistics and Management
关键词 比例风险模型 Newton—Raphson算法 Minorization—Maximization算法 极大似然估计 proportional hazards model, Newton-Raphson algorithm, minorization-maximization algo-rithm, maximum likelihood estimator
  • 相关文献

参考文献20

  • 1Anderson P K, Gill R D. Cox's regression model for counting processes: A large sample study [J]. The Annals of Statistics, 1982, 10: 1100-1120.
  • 2Bickel P J, Klassen C X, Ritov Y, Wellner J A. Efficient and adaptive estimation for semiparametric models [M]. Baltimore: Johns Hopkins University Press, 1993.
  • 3Lin D Y. Cox regression analysis of multivariate failure time data: The marginal approach [J]. Statistics in Medicine, 1994, 13: 2233-2247.
  • 4Chen H Y, Little, R J A. Proportional hazards regression with missing covariates [J]. Journal of the American StatisticM Association, 1999, 94: 896-908.
  • 5Chen K, Lo S H. Case-cohort and case-control analysis with Cox's model [J]. Biometrika, 1999, 86: 755-764.
  • 6Kalbfeisch J D, Prentice R L. The Statistical Analysis of Failure Time Data [M]. New York: John Wiley & Sons, 2002.
  • 7B6hning D, Lindsay B G. Monotonicity of quadratic approximation algorithms [J]. Annals of the Institute of Statistical Mathematics, 1988, 40: 641-663.
  • 8Becker M P, Yang I, Lange K. EM algorithms without missing data [J]. Statistical Methods in Medical Research, 1997, 6: 38-54.
  • 9De Pierro A R. A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography [J]. IEEE Transactions on Medical Imaging, 1995, 14:132 137.
  • 10Lange K, Hunter D R, Yang I. Optimization transfer using surrogate objective functions (with discussion) [J]. Journal of Computational and Graphical Statistics, 2000, 9: 1-20.

同被引文献5

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部