期刊文献+

带有线性退化和随机振荡的系统可靠性及维修决策 被引量:2

Reliability and Maintenance Decision for Systems Subjected to Linear Degradation and Random Shocks
原文传递
导出
摘要 研究了随时间发生线性退化和随机振荡导致瞬时退化的系统可靠度及定期维修策略。随机振荡的发生次数服从非时齐泊松过程,每次振荡造成系统的退化量独立同分布。当累积退化量达到阀值时,系统发生故障。为了改善系统工作状态,降低故障风险,每隔T时对系统进行不完全预防维修,维修后故障率函数将发生变化,维修成本与系统的退化程度有关。在NT时,对系统进行完全预防维修,使系统修旧如新。构建了系统的可靠度函数。在单位时间平均利润最大的前提下,提出不完全预防维修间隔T和完全预防维修周期NT的确定方法。分析了模型参数对维修决策的影响。 This paper studies the policies of the periodic maintenance for a system subjected to bothlinear degradation and random shocks. Random shocks arrive according to a non-homogeneous Poissonprocess. The damage sizes caused by the shock are i.i.d, random variables. A failure occurs whenthe overall degradation is beyond a threshold value. We consider two different preventive maintenancepolicies: Imperfect preventive maintenance (IPM) that is performed at periodic intervals and perfectpreventive maintenance (PPM) that fully upgrades the system to the as-good-as-new condition. Thehazard-rate function after IPM will be changed. The cost of IPM depends on the total degradation of thesystem. A generM reliability model is developed. The optimal IPM interval and PPM cycle that maximizethe expected profit per unit of time are derived. The effects of process parameters on maintenance policiesare studied.
出处 《数理统计与管理》 CSSCI 北大核心 2016年第4期669-678,共10页 Journal of Applied Statistics and Management
关键词 线性退化 随机振荡 可靠度 维修决策 linear degradation, random shocks, reliability, maintenance decision
  • 相关文献

参考文献14

  • 1Chien Y H, Sheu S H, Zhang Z G, Love E. An extended optimal replacement model of systems subject to shocks [J]. European Journal of Operational Research, 2006, 175(1): 399-412.
  • 2张斌,周伟灿,杨洲木,韩之俊.非正态总体控制图和预防维修策略耦合优化的研究[J].数理统计与管理,2012,31(5):857-862. 被引量:13
  • 3Richard Barlow, Larry Hunter. Optimum preventive maintenance policies [J]. Operations Research, 1960, 8(1): 90-100.
  • 4高松,崔利荣,杨亚坤.一类虚拟寿命不完全维修模型的统计模拟分析[J].数理统计与管理,2010,29(5):846-852. 被引量:4
  • 5程志君,郭波.连续劣化系统的最佳检测与维修策略分析[J].系统工程与电子技术,2008,30(1):193-196. 被引量:16
  • 6Kijima M. Some results for repairable systems with general repair [J]. Journal of Applied Probability, 1989, 26(1): 89 102.
  • 7Seo J H, Bai D S. An optimal maintenance policy for a system under periodic overhaul [J]. Mathe- matical & Computer Modelling, 2004, 39(4): 373-380.
  • 8Pham H, Wang H. Imperfect maintenance [J]. European Journal of Operational Research, 1996, 94(3): 425-438.
  • 9王小林,程志君,郭波,郭驰名.基于冲击模型劣化系统的不完全维修决策[J].系统工程理论与实践,2011,31(12):2380-2386. 被引量:13
  • 10Sheu S H, Chang C C, Chen Y L. A generalized periodic preventive maintenance model with virtual age for a system subjected to shocks [J]. Communications in Statistics--Theory and Methods, 2010, 39(13): 2379-2393.

二级参考文献48

  • 1杨振海,程维虎.统计模拟[J].数理统计与管理,2006,25(1):117-126. 被引量:7
  • 2杨振海,张国志.随机数生成[J].数理统计与管理,2006,25(2):244-252. 被引量:33
  • 3唐亚勇,刘亚平.具有两种失效状态系统的几何过程维修模型[J].四川大学学报(自然科学版),2006,43(6):1409-1411. 被引量:5
  • 4Kijima M, Morimura H and Suzuki Y. Periodical replacement problem without assuming minimal repair [J]. European Journal of Operational Research, 1988, 37(2): 194-203.
  • 5Kijima M. Some results for repairable systems with general repair [J]. Journal of Applied Probability, 1989, 26: 89-102.
  • 6Cui L, Kou W, Loh H T & Xie M. Optimal allocation of minimal & perfect repairs under resource constraints [J]. IEEE Transactions on Reliability, 2004, 53(2): 193-199.
  • 7Shirmohammadi A, Zhang Z, and Love E. A computational model for determining the optimal preventive maintenance policy with random breakdowns and imperfect repairs [J]. IEEE Transactions on Reliability, 2007, 56(2): 332-339.
  • 8Gao S, Zheng Z, Cui L. Expected repair times for a repairable system [C]. Proceedings of the 1st International Conference on Maintenance Engineering, Chengdu, China, 2006: 879-883.
  • 9Sheldon·M·Ross.统计模拟(英文版第4版)[M].北京:人民邮电出版社,2006.
  • 10Taylor H M. Optimal replacement under additive damage and other failure models[J]. Naval Research Logistics, 1975, 22: 1-18.

共引文献42

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部