期刊文献+

基于几率波探测下的量子雷达系统原理

The principle of the quantum radar system based on the probability wave
下载PDF
导出
摘要 从技术体制上划分,量子雷达分为有源量子雷达和无源量子雷达.根据探测波是实波还是几率波,有源量子雷达可分为实波量子雷达和几率波量子雷达.量子雷达还可分为线性量子雷达和非线性量子雷达.非线性量子雷达根据探测波采用纠缠光子和干涉几率波的不同而分为两种;还可进一步分为测回波和不测回波两种.利用几率波在空间的几率关联特性,通过对本地几率波的测量而获得空间的目标信息.为此我们将量子光栅与超导单光子探测器相结合,提出一种新型的、更高效的单光子检测器件,用于实现这种新型、不测回波信号的有源量子雷达.这一技术使量子雷达性能产生了巨大提升. In the technical system,the quantum radars are classified by the active quantum radars and the passive quantum radars.The active quantum radars are divided into real wave quantum radars and probability wave quantum radars according to the probing wave type.The quantum radars are further grouped into linear quantum radars and nonlinear quantum radars.The nonlinear quantum radars have two types based on the entangled photons and the interference probability wave.The nonlinear quantum radars are subdivided into two type that is with or without the photon echo checked.In the present work,the probability conservation appearing in the probability interference wave is applied to detect the target in the space through measuring the local wave.A novel and high efficient single-photon detector is developed combining the quantum grating with the superconducting single-photon detector and employed in the quantum radar not receiving echo.The quantum radar technology is highly promoted.
出处 《华中师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期515-520,共6页 Journal of Central China Normal University:Natural Sciences
关键词 非回波接收量子雷达 量子干涉 几率波 超导单光子检测器 量子光栅 not receiving echo quantum radar quantum interference probability wave superconducting single-photon detector quantum grating
  • 相关文献

参考文献28

  • 1SCULLY M O, ZUBAIRY M S. Quantum Optics[M]. Eng- land : Cambridge University Press, 1997.
  • 2Harris S E, Yamamoto Y. Photon Switching by Quantum Interference[J]. Phys Rev Lett, 1998, 81 : 3611-3620.
  • 3KANG H, ZHU Y F. Observation of Large Kerr Nonlinearity at Low Light Intensities[J]. Phys Rev Lett, 2003, 91: 093601(1-10).
  • 4CHANG H, DU Y J, YAOJ Q, et al. Observation of cross- phase shift in hot atoms with quantum coherence[J]. Euro Phys Lett, 2004, 65:485-494.
  • 5CHANG H, WU H B, XIE C D, et al. Controlled Shift of Optical Bistability Hysteresis Curve and Storage of Optical Signals in a Four-Level Atomic System[J]. Phys Rev Lett, 2004, 93:213901(1-9).
  • 6LI G X, PENG J S. Coherent population trapping in multi- level laser-induced continuum structure system [J]. Opt Commn,1997, 138: 59-69.
  • 7NAKAJIMA T, LAMBROPOULOS P. Population trapping through the continuum by phase-switching[J]. Opt Commn, 1995, 118: 40-48.
  • 8HARRIS S E, Field J E, IMAMOGLU A. Nonlinear Optics Processes Using Electromagnetically Induced Transparency [J]. PhysRevLett, 1990, 64: 1107-1116.
  • 9XIAO M, LI Y Q, JIN S Z, et al. Measurement of Disper- sive Properties of Electromagnetically Induced Transparency in Rubidium Atoms[J]. Phys Rev Lett, 1995, 74: 666-677.
  • 10SCULLY M O, ZHU S Y, GRAVRIELIDES A. Degener- ate Quantum-Beats Laser: Lasing without Inversion and In- version without Lasing[J]. Phys Rev Lett, 1989, 62: 2813-2823.

二级参考文献91

  • 1Migdall A J. Mod. Opt. 2001,, 51: 1265-1266.
  • 2Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge University Press: Cambridge, UK, 2000.
  • 3Gisin N, Ribordy G, Tittel W, et al. Rev. Mod. Phys. 2002, 74:145-195.
  • 4Hadfield R H. Nature Photonics 2009, 3(12): 696-705.
  • 5Varnava M, Browne D E, Rudolph T. Phys. Rev. Lett. 2008, 100:060502.
  • 6PHOTOMULTIPLIER TUBES. 3rd ed. ; Hamamatsu Photonics K. K. : 2006.
  • 7H5920 datasheet, http://www, hamamatsu, com/.
  • 8R5509-73 NIR PMT. http://www. hamamatsu, com/.
  • 9Channel Photomultipliers. http://optoelectronics. perkinelmer, com.
  • 10GPDM datasheet, http ://optoelectronics. perkinelmer, com.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部