期刊文献+

基于高通量芯片和生物信息学探索肌萎缩侧索硬化发病相关基因

Analysis of Amyotrophic Lateral Sclerosis Associated Genes Based on High-throughput Microarray and Bioinformatics
下载PDF
导出
摘要 目的从分子水平揭示肌萎缩侧索硬化(ALS)的发病机制,为临床诊疗提供新工具。方法在GEO中检索ALS患者芯片数据,使用BRB-Array Tools、GSEA、GOEAST、TOPPGENE等生物信息学工具进行统合分析。结果对GSE56808和GSE26276两个样本集进行数据挖掘,发现6个共同差异表达基因,并进行样本层次聚类,功能富集主要集中在氧化应激、钙代谢障碍、炎症反应、血管生成、线粒体代谢、其它神经系统退行性疾病、PI3K/AKT通路、P38MAPK通路、NOTCH通路等模块上。利用多种分类预测工具构建出一个包含6个特征基因的最优化分类器,基本可用于区分ALS患者和健康对照组。结论利用多种生物信息学方法从不同的角度定义了ALS患者分子发病机制的表达特征,为进一步的生物学探索提供了依据。 Objective To explore the molecular pathogenesis of amyotrophic lateral sclerosis(ALS),and provide novel tools for clinical diagnosis and treatment of ALS.Methods Gene expression profiles were obtained from GEO database.A set of bioinformatics tools,such as BRB-Array Tools,GSEA,GOEAST,TOPPGENE,were used to accomplish the data min-ing.Results By combining the results of two independent samples GSE56808 & GSE26276,six common differentially ex-pressed genes were identified,which were used to generate hierarchical clustering.Network and functional enrichment showed that ALS related genes were closely associated with oxidative stress,calcium metabolism disorders,inflammation,angiogenesis, mitochondrial metabolism,other neurodegenerative disorders and etc.They played essential roles in some important signal path-ways such as PI3K/Akt,P38 MAPK,NOTCH,etc.The optimal six-gene classifier constructed by multiple prediction tools for classification could differentiate the ALS patients from healthy control subj ects.Conclusion Data Mining and Bioinformatics a-nalysis can help to investigate the molecular pathogenesis of ALS in various perspectives,which provides the basis for further biological investigations on ALS.
出处 《华中科技大学学报(医学版)》 CAS CSCD 北大核心 2016年第3期248-252,257,共6页 Acta Medicinae Universitatis Scientiae et Technologiae Huazhong
基金 国家自然科学基金青年基金资助项目(No.81400122)
关键词 肌萎缩侧索硬化 差异表达 基因芯片 生物信息学 amyotrophic lateral sclerosis differential expression microarray bioinformatics
  • 相关文献

参考文献14

  • 1Katz J S,Dimachkie M M, Barohn R J. Amyotrophic lateral sclerosis: A historical perspective[J]. Neurol Clin, 2015, 33 (4) :727-734.
  • 2Raman R,Allen S P,Goodall E F, et al. Gene expression sig- natures in motor neuron disease fibroblasts reveal dysregula- tion of metabolism, hypoxia-response and RNA processing functions[J]. Neuropathol Appl Neurobiol, 2015,41 (2) : 201- 226.
  • 3Shtilbans A, Choi S G, Fowkes M E, et al. Differential gene expression in patients with amyotropbic lateral sclerosis[J]. Amyotroph Lateral Scler,2011,12(4) :250-256.
  • 4Allen S P, Dully L M, Shaw P J, et al. Altered age-related changes in bioenergetic properties and mitoehondrlal mor- phology in fibroblastsfrom sporadic amyotrophic lateral scle- rosis patients[J]. Neurobiol Aging, 2015,36 (10) : 2893-2903.
  • 5Yang S, Zhang K Y, Kariawasam R, et al. Evaluation of skin fibroblasts from amyotrophic lateral sclerosis patients for the rapid study of pathological features[J].Neurotox Res, 2015, 28(2) :138-146.
  • 6Simon R, Lain A, Li M C, et al. Analysis of gene expression data using BRB-Array Tools[J].Cancer Inform, 2007,4 (3) : 11-17.
  • 7Frade J M,Ovejero-Benito M C. Neuronal cell cycle:the neu- ron itself and its circumstances [J]. Cell Cycle, 2015,14 (5) : 712-720.
  • 8Pignataro G,Capone D,Polichetti G, et al. Neuroprotective, immunosuppressant and antineoplastic properties of mTOR inhibitors:current and emerging therapeutic options[J]. Curr Opin Pharmacol,2011,11(4) :378-394.
  • 9Keller O P Jr,O'Connor D M,Boulis N M. Gene and protein therapies utilizing VEGF for ALS[J]. Pharmacol Ther,2014, 141(3) :261-271.
  • 10房效莉,曹幸毅,梅倩倩,张进进,吴士文.肌萎缩侧索硬化与其他神经变性病重叠的研究进展[J].中华神经科杂志,2015,48(5):428-430. 被引量:6

二级参考文献36

  • 1Baumer D, Talbot K, Turner MR. Advances in motor neurone disease[J]. J Royal Soc Med, 2014, 107(1) : 14-21.
  • 2Gijselinck I, Van Langenhove T, van der Zee J, et al. A C9orf72 promoter repeat expansion in a Flanders-Be[gian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum : a gene identification study [ J ]. Lancet Neurol, 2012, 11(1): 54-65.
  • 3Sieben A, Van Langenhove T, Engelborghs S, et al. The genetics and neuropathology of frontotemporal lobar degeneration[ J]. Acta Neuropathol, 2012, 124(3): 353-372.
  • 4Ling SC, Poymenidou M, Cleveland DW. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis [ J ]. Neuron. 2013. 79 ( 3 ) : 416-438.
  • 5Turner MR, Hammers A, AI-Chalabi A, et al. Distinct cerebral lesions in sporadic and ' D90A' SOD1 ALS : studies with [ 11C ] flumazenil PET [ J]. Brain, 2005, 128 ( Pt 6) : 1323-1329.
  • 6Chio A, Calvo A, Moglia C, et al. Amyotrophic lateral sclerosis- frontotemporal lobar dementia in 3 families with p. Ala382Thr TARDBP mutations [ J ]. Arch Neurol, 2010, 67 ( 8 ) : 1002- 1009.
  • 7Seelaar H, Rohrer JD, Pijnenburg YA, et al. Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review[ J ]. J Neurol Neurosurg Psychiatry, 2011, 82 (5) : 476- 486.
  • 8Wheaton MW, Salamone AR, Mosnik DM, et al. Cognitive impairment in familial ALS [ J ]. Neurology, 2007, 69 ( 14 ) : 1411-1417.
  • 9Myers AJ, Kaleem M, Marlowe L, et al. The Hlc haplotype at the MAPT locus is associated with Alzheimer' s disease[J]. Hum Mol Genet, 2005, 14( 16): 2399-2404.
  • 10Ticozzi N, LeClerc AL, van Blitterswijk M, et al. Mutational analysis of TARDBP in neurodegenerative diseases[ J]. Neurobiol Aging, 2011, 32( 11 ): 2096-2099.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部