期刊文献+

一种基于对称性和上下文约束的线性鉴别分析方法

A linear discriminate analysis method based on symmetry and contextual constraints
下载PDF
导出
摘要 在充分考虑人脸对称性的基础上,结合图像中像素之间的上下文约束关系,提出了一种改进的图像鉴别方法,即基于对称性和上下文约束的线性鉴别分析方法 (SCCLDA).为了证明改进算法的优势,本文进一步在原始样本和镜像样本的扩展集合上测试了CCLDA(ECCLDA)的识别性能.实验研究表明,在人脸受光照、姿态以及表情等外在因素影响情况下,SCCLDA方法比ECCLDA、CCLDA、LDA等方法在人脸识别效果上具有更好的稳定性和更高的准确性. Linear discriminate analysis(LDA)considers the discriminative information in the process of feature extraction,but the contextual information among pixels in the high dimensional space is not exploited.Contextual constraints based linear discriminate analysis(CCLDA)incorporates the contextual information into linear discriminate analysis during feature dimensionality reduction,which can provide much more useful information for classification.In this paper,linear discriminate analysis method based on symmetry and contextual constraints is proposed.In the improved method,the symmetry of the face to generate new samples is exploited and the contextual constraint in images is considered to perform face recognition.Moreover,to show the superiority of the improved method,the recognition performance of CCLDA is tested on the extended set of the original samples and the image samples.Experiments are conducted to prove the effectiveness of SCCLDA by varying illumination,facial expression and poses.Moreover,the experimental results show that the improved method outperform face recognition methods including ECCLDA,CCLDA and LDA.
作者 陈凤
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2016年第4期32-37,共6页 Journal of Northwest Normal University(Natural Science)
基金 浙江省教育厅一般科研项目(Y201432382)
关键词 上下文约束 对称性 人脸识别 线性鉴别分析 contextual constraints symmetry face recognition linear discriminant analysis
  • 相关文献

参考文献14

  • 1杨琼,丁晓青.对称主分量分析及其在人脸识别中的应用[J].计算机学报,2003,26(9):1146-1151. 被引量:35
  • 2BAUMANN F, ERNST K, EHLERS A, et al. Symmetry enhanced adaboost [ C ]//Advances in visual computing 6453. Berlin: Springer, 2010: 286.
  • 3LOY G, EKLUNDH J O. Detecting symmetry and symmetric constellations of features [C]//Eccv'ob Proceedings of the 9th European Conference on Cornputer Vision. Berlin: Springer, 2006: 508.
  • 4HARGUESS J, AGGARWAL J K. Is there a connection between face symmetry and face recognition?[C]/ / IEEE Computer Vision and Patter Recognition Workshops, IEEE: Colorado Springs, 2011: 73.
  • 5XU Yong , ZHU Xing-jie , LI Zheng-ming , et al. Using the original and 'symmetrical face ~ training samples to perform representation based two-step face recognition [J]. Pattern Recognition, 2013, 46(4): 1151.
  • 6ROYER R F. Detection of symmetry[J]. Journal of Experimental Psychology Human Perception and Performance, 1981, 7(6) :1186.
  • 7LEYTON M. Symmetry, Causality, Mind [M]. London: MIT Press, 1992.
  • 8KIRBY M, SIROVICH L. Application of the Karhunen-Lo~ve Procedure for the characterization of human faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (1): 103.
  • 9SONGYJ, KINYG, CHANGUD, etal. Face recognition robust to left/right shadows, facial symmetry[J]. Pattern Recognition, 2006, 39 (8) : 1542.
  • 10曾岳,冯大政.一种基于人脸垂直对称性的变形2DPCA算法[J].计算机工程与科学,2011,33(7):74-79. 被引量:4

二级参考文献33

  • 1Royer F R. Detection of symmetry [J]. Journal of Experimental Psychology: Human, Perception and Performance, 1981, 7(6) : 1 186-1 210.
  • 2Leyton M. Symmetry, Causality, Mind [ M ]. London: MIT Press, 1992.
  • 3Kirby M, Sirovich L. Application of the Karhunen- Loeve Procedure for the characterization of human faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1) : 103-108.
  • 4Belhumeur P N, Hespahha J P, Kriegmart D J. Eigenfaces vs. fisherfaces., recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (7) : 711-720.
  • 5HeXF, Yan SC, Hu YX, et al. Face recognition using Laplacianfaces[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 3 ) : 328-340.
  • 6Phillips P J, Moon H, Rizvi S A, et al. The FERET evaluation methodology for face-recognition algorithms [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10) : 1 090-1 104.
  • 7Georghiades A S, Belhumeur P N, Kriegman D J. From few to many: illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6):643-660.
  • 8Zhang G C, Huang X S, Li S Z. Boosting local binary pattern ( LBP )-based face recognition [ C ]// Proceedings of the 5th Chinese Conference on Biometric Recognition. Guangzhou, China: Springer, 2004, 3388.- 179-186.
  • 9Turk M, Pentland A. Eigenfaces for Recognition[J]. Journal of Cognitive Neuroscience, 1991, 3( 1 ) : 71-86.
  • 10Yang J, Zhang D, Frangi Alejandro F, et al. Two-Dimen sional PCA: A New Approach to Appearance Based Face Representation and Recognition[J]. Journal of IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004, 26(1) :131-137.

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部