期刊文献+

吊桥方程指数吸引子的存在性 被引量:3

The Existence of Exponential Attractors for the Suspension Bridge Equation
下载PDF
导出
摘要 吊桥方程是工程数学中的一类重要数学模型.在非自治和自治两种情况下,吊桥方程紧整体吸引子的存在性已有许多结果.然而,这一问题指数吸引子的存在性还无人讨论.我们借助Eden等人提出的方法,证明了该问题指数吸引子的存在性. Abstract The suspension bridge equation is an important model in engineering math- ematics. We have a lot of results for attractors in cases of autonomous and nonau- tonomous conditions. However, there are nobody have discussed the problem of expo- nential attractors for this problem. Now, based on the methods proposed by Aden et al, the existence of the exponential attractors for the suspension bridge equation are proved.
出处 《应用泛函分析学报》 2016年第2期212-219,共8页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(11101334 11361053) 甘肃省自然科学基金(1107RJZA223) 甘肃省教育厅高校科研基金
关键词 吊桥方程 指数吸引子 挤压性 suspension bridge equation exponential attractors squeezing property
  • 相关文献

参考文献11

  • 1Lazer A C, McKenna P J. Large-amplitude periodic oscillations in suspension brideg: Some new connections with nonlinear analysis[J]. SIAM Rev, 1990, 32(4): 537-578.
  • 2Humphreys L D. Numerical mountain pass solutions of a suspension bridge equation[J]. Nonliear Analysis (TMA), 1997, 28(11): 1811-1826.
  • 3McKenna P J, Walter W. Nonliear oscillation in a suspension bridge[J]. Nonliear Analysis, 2000(39): 731-743.
  • 4Choi Q H, Jung T. A nonliear suspension bridge equation with noncoustant load[J]. Nonliear Analysis, 1999(35): 649-668.
  • 5Zhong C K, Ma Q Z, Sun C Y. Existence of strong solutions and golbal attractors for the suspension bridge equations[J]. Nonlieax Analysis, 2007(67): 442-454.
  • 6Ma Q Z, Zhong C K. Existence of strong solutions and global attractors for the coupled suspension bridge equations[J]. Journal of Differential Equations, 2009(246): 3755-3775.
  • 7Ma Q Z, Wang S P, Chen X B. Uniform compact attractors for the coupled suspension bridge equations[J]. Applied Mathematics and Computation, 2011(217): 6604-6615.
  • 8Ma Q Z, Wang B L. Existence of pullback attractors for the coupled suspension bridge equations[J]. Journal of Differential Equations, 2011(16): 1-10.
  • 9Kang J R. Pullback attractors for the non-autonomous coupled suspension bridge equations[J]. Applied Mathematics and Compution, 2013(219)- 8747-8758.
  • 10Efendiev M, Miranville A, Zelik S. Exponential attractors for a nonliear reaction-diffusion system in l~3[J]. C R Acad Sci Pris Ser I Math, 2000(330): 713-718.

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部