期刊文献+

锂/钠离子电池材料的固体核磁共振研究进展 被引量:5

Recent Progress in Solid-State NMR Study of Electrode/Electrolyte Materials for Lithium/Sodium Ion Batteries
下载PDF
导出
摘要 固体核磁共振技术是一种定量分析固体材料结构与组成的强有力手段,结合固体核磁共振和常规X-射线衍射(XRD)、X-射线吸收谱(XAS)等表征方法可对锂/钠离子电池材料在电化学反应中的结构演化过程进行全面的分析.例如通过固体核磁共振研究,可获得不同合成与修饰条件下,锂/钠离子电池电极和电解质材料体相以及电极/电解质界面层的化学组成、局域结构和离子扩散动力学等信息,为高性能电池材料的设计和研发提供重要的基础数据.本文结合作者课题组的研究工作,综述了近三年来国内外固体核磁共振技术在锂/钠离子电池电极、电解质材料以及固体电解质界面膜(SEI)研究中的应用和进展. Solid state NMR technique is a powerful tool for characterizing the local structure and compositions of solid materials quantitatively. A comprehensive understanding of the structure evolution during the electrochemical reactions of the materials for lithium/sodium ion batteries will be obtained with the combination of solid state NMR, XRD, and XAS methods. Through analyzing solid state NMR spectra, we can obtain the compositions, local structures and ion diffusion dynamics of electrodes, electrolytes and surface layers for lithium/sodium ion batteries, providing an important theoretical support for the design and development of high-performance materials for batteries. In this paper, we review the recent advances in the application of solid state NMR techniques in studies of electrodes, electrolyte materials and solid-electrolyte interface(SEI layer) for lithium/sodium ion batteries over the past 3 years, in combination with research results from our group.
出处 《电化学》 CAS CSCD 北大核心 2016年第3期231-243,共13页 Journal of Electrochemistry
基金 国家自然科学基金重点项目(No.21233004) 国家自然科学基金项目(No.21473148) 海外及港澳学者合作研究基金(No.21428303)资助
关键词 固体核磁共振 局域结构 锂离子电池 钠离子电池 构效关系 solid state NMR local structure lithium ion batteries sodium ion batteries structure-function relationship
  • 相关文献

参考文献2

二级参考文献117

  • 1Padhi A, Nanjundaswamy K, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188-1194.
  • 2Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407: 496-499.
  • 3Armand M, Michot C, Ravet N, et al. Lithium insertion electrode materials based on orthosilicate derivatives. United States Patent, 6085015, 2000-7-4.
  • 4Amine K. Active material for lithium batteries. United States Patent, 2002/0039681 A1, 2002-4-4.
  • 5Whittingham M S. Lithium batteries and cathode materials. Chem Rev, 2004, 104: 4271-4302.
  • 6Bruce P G, Scrosati B, Tarascon J-M. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed, 2008, 47: 2930-2946.
  • 7Scrosati B, Garche J. Lithium batteries: Status, prospects and future. J Power Sources, 2010, 195: 2419-2430.
  • 8Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci, 2011, 4: 3223-3242.
  • 9Grey C P, Lee Y J. Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci, 2003, 5: 883-894.
  • 10Grey C P, Dupre N. NMR Studies of cathode materials for lithium-ion rechargeable batteries. Chem Rev, 2004, 104: 4493-4512.

共引文献3

同被引文献6

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部