期刊文献+

富锂锰基材料xLi_2MnO_3·(1-x)LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2(x=0.3,0.5,0.7)的电化学和同步辐射研究 被引量:2

Electrochemical and in situ X-ray Absorption Fine Structure Study of Li-Rich Cathode Materials
下载PDF
导出
摘要 采用共沉淀的方法,以过渡金属硫酸盐为起始物质制备了一系列不同组成的富锂锰基正极材料xLi_2MnO_3·(1-x)LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2(x=0.3,0.5,0.7),通过XRD、Rietveld精修等物理手段比较了不同组成材料的结构特征.通过对比不同比例材料的首周库仑效率、放电可逆容量、循环性能、电压降现象及不同温度下各比例富锂材料的倍率表现等电化学性能,确定0.5Li_2MnO_3·0.5LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2为该系列材料的最优比例.然后采用原位X射线吸收谱技术,对富锂材料在首周活化过程中的机理进行了研究.同步辐射结果表明,在首周充电过程中,镍和钴的价态分别从+2、+3价氧化到+4价,而对于锰来讲,虽然在富锂锰基材料活化的过程中其周围的局域电子结构发生了一定的变化,但是其化合价始终维持在+4价没有发生变化. A series of the lithium-rich and manganese-based layered structure xLi_2MnO_3·(1-x)LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2(x=0.3,0.5,0.7)materials were synthesized by a co-precipitation method, and followed by a solid-state reaction process. By comparing the first cycle efficiency, the reversible discharge capacity, the cycling stability and the voltage decay during the charge/discharge cycling process, the material with the composition of 0.5Li_2MnO_3·0.5LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2 was found to show the best electrochemical performance. The lithium storage mechanism and thermal stability of the de-lithiated compound were also investigated by in situ X-ray absorption fine structure(XAFS) spectroscopy and differential scanning calorimetry(DSC) techniques. The results of XAFS indicates that during the charging process to 4.5 V, the Ni and Co ions are oxidized to Ni^(4+) and Co^(4+), respectively, while the Mn ion remains Mn^(4+).
出处 《电化学》 CAS CSCD 北大核心 2016年第3期288-298,共11页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.2011CB935903) 上海市科委项目(No.13JC1407900)资助
关键词 富锂层状氧化物 正极材料 锂离子电池 原位X射线吸收谱 lithium-rich layered oxides cathode material lithium-ion battery in situ X-ray absorption fine structure
  • 相关文献

参考文献22

  • 1Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries [J]. Chemistry Letters, 2001, 7: 642-643.
  • 2Chen C H, Liu J, Stoll M E, et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. Journal of Power Sources, 2004, 128 (2): 278-285.
  • 3Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithiumion batteries[J]. Journal of Materials Chemistry, 2007, 17 (30): 3112-3125.
  • 4Kim J S, Johnson C S, Thackeray M M. Layered xLiMO2. (1-x)Li2M'O3 electrodes for lithium batteries: A study of 0.95LiMn0.5Ni0.5020.05Li2TiO3 [ J]. Electrochemistry Communications, 2002, 4(3): 205-209.
  • 5Kim J S, Johnson C S, Vaughey J T, et al. Electrochemical and structural properties of xLi2MO3·(1-x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M' = Ti, Mn, Zr; 0 ≤ x ≤ 0.3)[J]. Chemistry of Materials, 2004, 16(10): 1996-2006.
  • 6Johnson C S, Li N C, Lefief C, et al. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3-(1-x)LiMno33:Nio.333Coo33302 (0 ≤ x ≤ 0.7)[J]. Chemistry of Materials, 2008, 20(19): 6095-6106.
  • 7Amalraj F., Kovacheva D, Talianker M, et al. Synthesis of integrated cathode materials xLi2MnO3. (1-x)LiMn1/3Ni1/3 Co1/3O2 (x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior (vol 157, A1121, 2010) [J]. Journal of the Electrochemical Society, 2010, 157(11): S19-S19.
  • 8Toprakci O, Toprakci H A K, Li Y, et al. Synthesis and characterization ofxLi2MnO3·(1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries [J]. Journal of Power Sources, 2013, 241: 522-528.
  • 9Zhao Y J, Ren W F, Wu R, et al. Improved molten salt synthesis and structure evolution upon cycling of 0.5Li2MrtO3-0.5LiCoO2 in lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2013, 17(8): 2259-2267.
  • 10Li J G, Wang L, Wang L, et al. Synthesis and characterization of Li(Li0.23m0.47Fe0.2Ni0.1)O2 cathode material for Li-ion batteries [J]. Journal of Power Sources, 2013,244: 652-657.

同被引文献21

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部