期刊文献+

An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr^(3+) removal capacity 被引量:3

An improved implementable process for the synthesis of zeolite 4A from bauxite tailings and its Cr^(3+) removal capacity
下载PDF
导出
摘要 A simple and practical method for the synthesis of zeolite 4A from bauxite tailings is presented in this paper. Systematic investigations were carried out regarding the capacity of zeolite 4A to remove Cr(III) from aqueous solutions with relatively low initial concentrations of Cr(III)(5–100 mg·L^(-1)). It is found that the new method is extremely cost-effective and can significantly contribute in decreasing environmental pollution caused by the dumping of bauxite tailings. The Cr(III) removal capacity highly depends on the initial p H value and concentration of Cr(III) in the solution. The maximum removal capacity of Cr(III) was evaluated to be 85.1 mg×g^(-1) for zeolite 4A, measured at an initial p H value of 4 and an initial Cr(III) concentration of 5 mg·L^(-1). This approach enables a higher removal capacity at lower concentrations of Cr(III), which is a clear advantage over the chemical precipitation method. The removal mechanism of Cr(III) by zeolite 4A was examined. The results suggest that both ion exchange and the surface adsorption-crystallization reaction are critical steps. These two steps collectively resulted in the high removal capacity of zeolite 4A to remove Cr(III). A simple and practical method for the synthesis of zeolite 4A from bauxite tailings is presented in this paper. Systematic investigations were carried out regarding the capacity of zeolite 4A to remove Cr(III) from aqueous solutions with relatively low initial concentrations of Cr(III)(5–100 mg·L^(-1)). It is found that the new method is extremely cost-effective and can significantly contribute in decreasing environmental pollution caused by the dumping of bauxite tailings. The Cr(III) removal capacity highly depends on the initial p H value and concentration of Cr(III) in the solution. The maximum removal capacity of Cr(III) was evaluated to be 85.1 mg×g^(-1) for zeolite 4A, measured at an initial p H value of 4 and an initial Cr(III) concentration of 5 mg·L^(-1). This approach enables a higher removal capacity at lower concentrations of Cr(III), which is a clear advantage over the chemical precipitation method. The removal mechanism of Cr(III) by zeolite 4A was examined. The results suggest that both ion exchange and the surface adsorption-crystallization reaction are critical steps. These two steps collectively resulted in the high removal capacity of zeolite 4A to remove Cr(III).
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期850-857,共8页 矿物冶金与材料学报(英文版)
基金 financially supported by the National High Technology Research and Development Program of China(No.2013AA032003) the National Natural Science Foundation of China(Nos.51372019,51272025,and 51072022)
关键词 bauxite tailings zeolite trivalent chromium wastewater treatment bauxite tailings zeolite trivalent chromium wastewater treatment
  • 相关文献

参考文献4

二级参考文献83

共引文献57

同被引文献23

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部