期刊文献+

OH-浓度对地下水中铁碳酸盐沉淀形成的影响

Investigation of the effect of OH^- concentration on the formation of iron carbonate precipitation in groundwater
下载PDF
导出
摘要 铁的碳酸盐沉淀是Fe^0-PRB运行过程中最为常见的铁腐蚀产物,其对Fe^0-PRB的长期运行有重要的影响.探究这类沉淀产物形成的环境条件,可为控制Fe表面碳酸盐沉淀的生成提供重要依据.本文以Fe Cl_2、Na OH、Na_2CO_3为反应物,考察了缺氧条件下不同[OH^-]=0.02,0.06,0.1mol/L及R=[Fe^(2+)]/[OH^-]、R′=[CO_3^(2-)]/[OH-]对铁的碳酸盐沉淀生成情况的影响.结果表明,不同实验条件下检测到了Fe CO_3、Fe_2(OH)_2CO_3及Fe_6(OH)_(12)CO_3三种铁的碳酸盐沉淀.Fe_6(OH)_(12)CO_3仅能在低浓度[OH^-]=0.02mol/L时生成,高浓度的OH^-条件下不能生成.Fe_2(OH)_2CO_3在较低的OH-浓度,较小的R条件下生成;较高的OH^-浓度,较大的R同样有利于Fe_2(OH)_2CO_3的生成.Fe CO_3仅在[OH^-]=0.02mol/L,[Fe^(2+)]、[CO_3^(2-)]均较低情况下与Fe_2(OH)_2CO_3共同生成. Iron Carbonate precipitation is the most common corrosion products during the process of Fe0-PRB operation, which have important influence on the long-term operation of Fe0-PRB. Exploring the precipitate formation condition can provide vital evidence to controll its formation on the Fe surface. Experiments were conducted in FeCl2, NaOH, and Na2CO3 solutions to investigate the effect of different OH- concentration (0.02、0.06、0.1mol/L) and R=[Fe2+]/[OH-]、R′=[CO32-]/[OH-] on the precipitate formation under anaerobic conditions. FeCO3、Fe2(OH)2CO3 and Fe6(OH)12CO3 were detected under the different experimental conditions, Fe6(OH)12CO3 can formation in the low concentration [OH-]=0.02mol/L and not formation in the high OH- concentration solutions. The low OH- concentration and low R, high OH-concentration and large R have positive effect on the formation of Fe2(OH)2CO3. FeCO3 just be detected and precipitated with Fe2(OH)2CO3 in the system with low concentrations of Fe2+、CO32-、OH-.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2016年第7期2051-2057,共7页 China Environmental Science
基金 国家自然科学基金项目(41102146,41530636)
关键词 FeCO3 Fe2(OH)2CO3 Fe6(OH)12CO3 OH-浓度 FeCO3 Fe2(OH)2CO3 Fe6(OH)12CO3 OH-concentration
  • 相关文献

参考文献20

  • 1Higgins M R, Olson T M. Life-Cycle Case Study Comparison of Permeable Reactive Barrier versus Pump--and-Treat Remediation [J]. Environmental Science & Technology, 2009,43(24):9432-9438.
  • 2张娜,陈日,张海涛,洪梅.模拟地下水中重碳酸盐浓度对零价铁还原硝基苯的影响[J].中国环境科学,2014,34(8):2010-2016. 被引量:2
  • 3邓红卫,贺威,胡建华,周科平.Fe^0-PRB修复地下水硝酸盐污染数值模拟[J].中国环境科学,2015,35(8):2375-2381. 被引量:10
  • 4Klausen J, Vikesland P J, Kohn T, et al. Longevity of Granular Iron in Groundwater Treatment Processes:Solution Composition Effects -on Reduction of Organohalides and Nitroaromatie Compounds [J]. Environmental Science & Technology, 2003,37(6):1208-1218.
  • 5Jeen S W, Gillham R W, Blowes D W. Effects of carbonate precipitates on long-term performance of granular iron for reductive dechlorination of TCE. [J]. Environmental Science & Technology, 2006,40(20):6432-6437.
  • 6Kamolpomwijit W, Liang L, Moline G R, et al. Identification and Quantification of Mineral Precipitation in Fe0 Filings from a Column Study [J]. Environmental Science & Technology, 2004, 38(21):5757-5765.
  • 7Bonin P M L, Odziemkowski M S, Reardon E J, et al. In situ identification of carbonate-containing green rust on iron electrodes in solutions simulating groundwater [J]. Journal of Solution Chemistry, 2000,29(10): 1061-1074.
  • 8Kohn T, Roberts A L. effect of silica on the degradation of Organohalides in Granular iron columns [J]. Journal of Contaminant Hydrology, 2006,83(1):70-88.
  • 9Roh Y, Lee S Y, Elless M P. Characterization of corrosion products in the permeable reactive barriers [J]. Environmental Geology, 2000,40( 1/2): 184-194.
  • 10Bi E, Bowen I, Devlin J F. Effect of Mixed Anions (HCO3-- SO42-- CIO4-) on Granular Iron (Fe0) Reactivity [J]. Environmental Science & Technology, 2009,43(15):5975-5981.

二级参考文献32

  • 1樊金红,徐文英,高廷耀.零价铁体系预处理硝基苯废水机理的研究[J].工业用水与废水,2004,35(6):53-56. 被引量:23
  • 2董军,赵勇胜,赵晓波,刘睿,袁懋.PRB技术处理污染地下水的影响因素分析[J].吉林大学学报(地球科学版),2005,35(2):226-230. 被引量:23
  • 3吴双桃,陈少瑾,胡劲召,谢凝子,陈宜菲.零价铁对土壤中硝基苯类化合物的还原作用[J].中国环境科学,2005,25(2):188-191. 被引量:27
  • 4张国俊,孟洪,薛峰,纪志娟.TCE/PCE的DNAPL污染及零价铁墙防治技术[J].环境污染治理技术与设备,2006,7(4):12-18. 被引量:14
  • 5Andrea K P D, Lai C K, Kjeldsen P, et al. Effect of groundwater inorganics on the reduetive deehlorination of TCE by zero-valent ron [J]. Water Air Soil Pollution, 2005,162:401-420.
  • 6Komnitsas K, Bartzas G, Paspaliarisl, et al. Inorganic contaminant fate assessmantin zero-valent iron treatment walls [J]. Environmental Forensics, 2006,7:207-217.
  • 7Kostas Komnitsas, Georgios Bartzas, Ioannis Paspaliaris. Modeling of reaction front progress in fly ash permeable reactive barriers [J]. Environmental Forensics, 2006,7:219-231.
  • 8Kathy A. Northcott, Joannelle Bacus, Naoyuki Taya, et al. Synthesis and characterization of hydrophobic zeolite for the treatment of hydrocarbon contaminated ground water [J]. Journal of Hazardous Materials, 2010,183:434-440.
  • 9Li Lin, Benson Craig H. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers [J]. Journal of Hazardous Materials, 2010, doi:10.1016/j.jhazmat. 2010.04.113.
  • 10Blowes D W, Ptacek C J, Benner S G, et al. Treatment of inorganic contaminants using permeable reactive barriers [J]. Journal of Contaminant Hydrology, 2000,45( 1/2): 123-137.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部