期刊文献+

一种快速因果网络骨架学习算法 被引量:3

Fast causal network skeleton learning algorithm
下载PDF
导出
摘要 针对传统因果网络结构学习算法难以适用于高维网络的问题,该文提出1种快速且适用于高维网络的因果网络骨架构建算法。采取基于最大依赖性、最小冗余度的互信息加速策略,在2个节点间找出2个因果节点集,在这2个因果节点集的并集内分别对节点进行条件独立性测试。真实数据实验表明,在对高维网络进行结构学习时,该文算法的时间复杂度优于传统算法;由于减少了条件独立性测试的次数,提高了网络识别的准确率。 Aiming at the problem that the traditional structure of causal network learning algorithms is unfit for high dimensional networks ,a fast causal network skeleton construction algorithm is proposed for high dimensional networks .A mutual information accelerating strategy is used based on the maximum dependence and the minimum redundancy , two candidate causal sets between two nodes are found out ,and conditional independence tests of the 2 nodes are proposed in the union of the 2 candidate causal sets .Real data experiments show that the time complexity of the algorithm proposed here is better than the traditional algorithms for high dimensional networks;the recognition accuracy of networks is improved because conditional independence tests are decreased .
作者 洪英汉
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2016年第3期315-321,共7页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(61572144) 广东省科技计划项目(2015A030401101 2015B090922014 2013B090500127)
关键词 因果网络 骨架 高维网络 因果节点集 条件独立性测试 causal networks skeletons high dimensional networks causal sets conditional independence tests
  • 相关文献

参考文献2

二级参考文献22

  • 1PEARL J. Causality : models, reasoning and inference [ M ]. Cam- bridge: MIT Press, 2000.
  • 2SPIRTES P, GLYMOUR C, SCHEINES R. Causation, prediction, and search[ M]. Cambridge: MIT Press, 2000.
  • 3TSAMARDINOS I, BROWN L E, ALIFERIS C F. The max-rain hill- climbing Bayesian network structure learning algorithm[j]. Machine Learning, 2006, 65( 1 ) : 31-78.
  • 4CHICKERING D M. Optimal structure identieation with greedy search [J]. Journal of Machine Learning Research, 2002, 3: 507- 554.
  • 5SHIMIZU S, HOYER P O, HYVARINEN A, et al. A linear non- Gaussian aeyclic model for causal discovery[ J]. Journal of Machine Learning Research, 2006, 7 : 2003-2030.
  • 6HOYER P O, JANZING D, MOOIJ J M, et al. Nonlinear causal dis- covery with additive noise models [ C ]//Advances in Neural Informa- tion Processing Systems. Cambridze : MIT Press. 2009 .. 689- 696.
  • 7PETERS J, JANZING D, SCHOLKOPF B. Causal inference on dis- crete data using additive noise models[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2011,33(12) : 2436-2450.
  • 8VARGAS P, MOIOLI R, De CASTRO L N, et al. Artificial homeo- static system: a novel approach[ C]//Proc of the 8th European Con- ference. 2005 : 754-764.
  • 9JANZING D, MOOIJ J, ZHANG Kun, et al. Information- geometric approach to inferring causal directions [ J ]. Artificial Intelligence, 2012, 56( 10):5168-5194.
  • 10COVER T M, THOMAS J A. Elements of information theory [ M ]. New Jersey : Wiley-Blackwell, 2005.

共引文献10

同被引文献8

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部