期刊文献+

一种混合聚类的粒子群差分进化算法 被引量:1

A Hybrid Clustering Particle Swarm and Differential Evolution Algorithm
下载PDF
导出
摘要 针对差分进化算法在运行后期收敛速度慢和容易陷入局部最优的不足,提出一种混合聚类的粒子群差分进化算法.利用一步K-均值聚类算法改进粒子群优化算法的速度更新,使用线性递减的选择概率将改进后的粒子群算法与差分进化算法相融合,并在一定条件下对种群中部分较差个体进行重置.对9个典型测试函数的数值试验和与其他三种进化算法的比较结果表明:所提算法收敛速度快,寻优能力强并且鲁棒性好. A hybrid differential evolution algorithm is introduced because the basic differential evolution algorithm has disadvantages of low convergence speed and local optimum.Firstly,K-means cluster algrithm was used to modify the velocity updating formula of the particle swarm optimization algorithm. Then the modified particle swarm optimization algorithm was combined with the differential evolution algorithm by means of a linear decreasing selective probability.Finally some individuals with poor performance were reset under certain conditions.Numerical experiments on nine typical benchmark functions illustrate that the proposed algorithm is fast in convergence speed,strong in search ability and good in robustness.
出处 《西安工业大学学报》 CAS 2016年第5期357-364,共8页 Journal of Xi’an Technological University
基金 国家自然科学基金(61273311 61173094)
关键词 K-均值聚类 混合算法 差分进化 粒子群优化 种群重置 K-means clusters hybrid algorithms differential evolution particle swarm optimization population reset
  • 相关文献

参考文献18

  • 1KANARACHOS A, KOULOCHERIS D, VRAZOPOU- LOS H. Evolutionary Algorithms with Deterministic Mu- tation Operators used for the Optimization of the Trajec- tory of a Four-bar Mechanism[J]. Mathematics and Computers in Simulation, 2003,63 : 483.
  • 2FUJIWARA Y, SAWAI H. Evolutionary Computa- tion Applied to Mesh Optimization of a 3-D Facial Image[J]. IEEE Transactions on Evolutionary Com- putation, 1999,3(2) : 113.
  • 3STORN R, PRICE K. Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimiza- tion over Continuous Space[R]. International Com- puter Science Institute, Berkeley, 1995.
  • 4KENNEDY J, EBERHART R C. Particle Swarm Op- timization[C]//Proceedings of IEEE International Conference on Neural Networks, Piscataway: IEEE Press, 1995 : 1942.
  • 5PEDRO F, JOAO S, ZITA V, et al. Modified Particle Swarm Optimization Applied to Integrated Demand Response and DG Resources[J]. IEEE Transaction on Smart Grid,2013,4(1) :606.
  • 6汤小为,汤俊,万爽,唐波.改进变异策略的自适应差分进化算法及其应用[J].宇航学报,2013,34(7):1001-1007. 被引量:5
  • 7LIANG J J, QIN A K, SUGANTHAN P N, et alComprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Function[J]. IEEE Transaction on Evolutionary Computation, 2006,10(3) :281.
  • 8栾丽君,谭立静,牛奔.一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法[J].信息与控制,2007,36(6):708-714. 被引量:70
  • 9刘建平.基于混沌和差分进化的混合粒子群优化算法[J].计算机仿真,2012,29(2):208-212. 被引量:24
  • 10段玉红,高岳林.基于差分演化的粒子群算法[J].计算机仿真,2009,26(6):212-215. 被引量:19

二级参考文献49

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2夏桂梅,曾建潮.微粒群算法的研究现状及发展趋势[J].山西师范大学学报(自然科学版),2005,19(1):23-25. 被引量:19
  • 3张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:139
  • 4高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 5刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 6谢晓峰,张文俊,杨之廉.粒子群算法综述[M].控制与决策,2003,18(2):129-134.
  • 7J Robinson, S Sinton, Y Rahmat - Samii. Particle swarm, genetic algorithm, and their hydirds: optimization of a profiled corrygated horn antenna[ C]. IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, San Antonio, TX 2002.
  • 8Y Shi, R Eberhart. Empirical study of particle swarm optimization [ C ]. International Conference on Evolutionary Computation, Washington, USA:IEEE, 1999. 1945 - 1950.
  • 9R C Eberhart, Y H Shi. Particle swarm optimization: developments , applications and resources [ C ]. proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, USA : IEEE Service Center, 2001.81 - 86.
  • 10J Kennedy, R C Eberhart. Particle swarm optimization [ C ]. Proc. IEEE Int Conf on Neural Networks, Perth WA, Australia, 1995. 1942 - 1948.

共引文献116

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部