摘要
为了使聚噻吩衍生物可以溶解在乙醇/水中,实现其水溶性.通过酯化反应合成了6-氯己基噻吩-3-羧酸酯,6-氯己基噻吩-3-羧酸酯与三乙胺反应合成3-噻吩-乙酰基-氧己基-三乙基氯化铵;采用Fe(Ⅲ)对3-噻吩-乙酰基-氧己基-三乙基氯化铵进行催化聚合,得到聚噻吩衍生物聚(3-噻吩-乙酰基-氧己基-三乙基氯化铵).采用傅里叶红外光谱仪对合成的中间单体及聚合物结构进行表征,使用凝胶渗透色谱对合成的聚合物的分子及分子量分布进行测试;通过紫外-可见分光光度计测定了目标聚合物的带边吸收波长.将目标聚合物与石墨烯的乙醇/水溶液,采用旋涂法制备出太阳能电池器件,并对其输出特性进行测试.研究结果表明:将聚(3-噻吩-乙酰基-氧己基-三乙基氯化铵)与石墨烯的复合物作为活化层制备的太阳能电池器件,光照条件下测试,开路电压为0.565 9V,短路电流为0.162 4A,能量转换效率为3.75×10^(-2)%.在暗箱中测试,开路电压为4×10^(-4) V,短路电流为4.88mA,能量转化效率为5.5×10^(-3)%.自然光照下,其能量转换效率是暗箱中的6.8倍,说明聚噻吩衍生物具有光伏性能,但该器件能量转换效率较低.
In order to make the polythiophene derivatives are dissolved in ethanol/water to achieve its solubility in water.The 6-chlorine hexyl thiophene-3-carboxylic ester (M-1 ) was synthesized by esterification reaction,and the 3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride (M-2)was prepared by 6-chlorine hexyl thiophene-3-carboxylic ester and triethylamine.Polythiophene derivatives Poly (3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride)(P-1 )was synthesized by Fe(Ⅲ) catalytic polymerization.Their molecular structures were characterized by FT IR.Molecular weight and its distribution were measured by gel permeation chromatograph,and the edge absorption wavelength of poly (3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride ) were measured by UV-vis absorption spectrum.Polymer and graphene were dissolved in the mixture of ethanol/water.The spin coating was used to prepare the poly (3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride)/graphene film,whose output characteristics were tested,for the preparation of solar cell devices.The film of poly (3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride)/graphene was used as activation layer of solar cell device,under the darkness condition,the photoelectric energy conversion efficiency of this film is 5.5 × 10^-3%,the short-circuit current is 4.88 mA.But under the lightness condition,its photoelectric energy conversion efficiency is 3.75×10^-2%,and the short-circuit current is 0.162 4 A. Compared with that of under the darkness condition,the photoelectric energy conversion efficiency is 6 .8 times higher.The polythiophene derivatives have photovoltaic properties,but the photoelectric conversion efficiency is low.
出处
《西安工业大学学报》
CAS
2016年第5期365-370,376,共7页
Journal of Xi’an Technological University
关键词
季铵盐聚噻吩衍生物
太阳能电池
光伏性
溶解性
quaternary ammonium salt poly thiophene derivatives
organic polymer photovoltaic solar cell
photovoltaic
solubleness