期刊文献+

Vlasov-Poisson-Landau(Fokker-Planck)方程解的大时间行为

Large time behavior of solutions to Vlasov-Poisson-Landau(Fokker-Planck) equations
原文传递
导出
摘要 本文考虑Vlasov-Poisson-Fokker-Planck(VPFP)方程和Vlasov-Poisson-Landau(VPL)方程的初值问题,给出了在平衡态附近的线性化的VPFP方程和VPL方程的谱分析和半群估计,并且给出了非线性问题解的最佳衰减速度.本文证明当初值是整体Maxwell的小扰动时,VPFP方程的解以指数衰减速度收敛到平衡态,而VPL方程的解以代数速度(1+t)-1/4收敛到平衡态. In this paper, we consider the initial value problems for Vlasov-Poisson-Fokker-Planck (VPFP) equations and Vlasov-Poisson-Landau (VPL) equations. We give the spectrum analysis and semigroup estimates on the linearized VPFP equations and VPL equations around their equilibrium states and show the optimal convergence rates of global solution to nonlinear problems. We show that the solution to VPFP equations tends to the equilibrimn state at the exponential convergence rate, the solution to VPL equations tends to the equilibrium state at the algebraic convergence rate (1 + t)^-1/4 when initial values are small perturbations of global Maxwellian.
出处 《中国科学:数学》 CSCD 北大核心 2016年第7期981-1004,共24页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11171228 11231006 11461161007 11225102和11301094) 国家自然科学基金国际(地区)合作与交流项目NSFC-RGC项目(中国香港)(批准号:N-City U 102/12) 北京市长城学者项目(批准号:CIT&TCD20140323) 北京市博士后基金(批准号:2014ZZ-96) 广西省自然科学基金(批准号:2014GXNSFBA118020) 广西大学科研基金(批准号:XBZ130086)资助项目
关键词 Vlasov-Poisson-Fokker-Planck方程 Vlasov-Poisson-Landau方程 谱分析 最佳衰减率 Vlasov-Poisson-Fokker-Planck equations, Vlasov-Poisson-Landau equations, spectrum analysis,optimal convergence rates
  • 相关文献

参考文献24

  • 1Victory H D, O’Dwyer B P. On classical solutions of Vlasov-Poisson Fokker-Planck systems. Indiana Univ Math J,1990, 39: 105-156.
  • 2Rein G, Weckler J. Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions. J Differential Equations, 1992, 99: 59-77.
  • 3Bouchut F. Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions. J Funct Anal, 1993, 111: 239-258.
  • 4Carpio A. Long-time behaviour for solutions of the Vlasov-Poisson-Fokker-Planck equation. Math Methods Appl Sci, 1998, 21: 985-1014.
  • 5Carrillo J A, Soler J, Vazquez J L. Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system. J Funct Anal, 1996,141: 99-132.
  • 6Bouchut F, Dolbeault J. On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differential Integral Equations, 1995, 8: 487-514.
  • 7Ono K, Strauss A W. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete Contin Dyn Syst, 2000, 6: 751-772.
  • 8Victory H D. On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems. J Math Anal Appl,1991, 160: 525-555.
  • 9Hwang H J, Jang J. on the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete Contin Dyn Syst, 2013, 18: 681-691.
  • 10Guo Y. The Vlasov-Poisson-Landau system in a periodic box. J Amer Math Soc, 2012, 25: 759-812.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部