期刊文献+

一类互惠种群脉冲模型的正概周期振荡研究

Study on Positive Almost Periodic Oscillation of a Model of Facultative Mutualism with Impulsive Effects
原文传递
导出
摘要 本文将考虑一类很难得到持续性的概周期互惠种群脉冲模型.利用一种新的研究思想和方法——基于单调算子的不动点理论,我们对其正概周期振荡进行研究并得到一个新的结果;利用李雅普洛夫函数方法,对该模型及其正概周期振荡的全局吸引性进行探讨,得到一些关于该模型正概周期振荡存在、惟一且全局吸引的新结果.本文的结果推广并改进了近年来的一些研究结果. This paper is concerned with a model of facultative mutualism with impulsive effects, which is hard to obtain the permanence. Using the fixed point theory base on monotone operator, the positive almost periodic solutions of the model is studied. Further, by constructing a suitable Lyapunov functional, the global attractivity of the model is also investigated. The results of this paper extend and improve some results in recent years.
出处 《生物数学学报》 2016年第2期211-222,共12页 Journal of Biomathematics
基金 四川省教育厅自然科学基金项目(15ZB0419) 攀枝花市科技局社会发展基金项目(2015CY-S-14)
关键词 互惠种群模型 概周期 单调算子 脉冲 Facultative mutualism Almost periodicity Monotone operator Impulse
  • 相关文献

参考文献28

  • 1Liu Z J,Wu J H,Tan R H,et al.Modeling and analysis of a periodic delayed two-species model of facultative mutualism[J].Appl Math Comput,2010,217(2):893-903.
  • 2Xia Y H,Cao J D,Zhang H Y,et al.Almost periodic solutions of n-species competitive system with feedback controls[J].J Math Anal Appl,2004,294(2):503-522.
  • 3Meng X Z,Chen L S.Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays[J].J Theor Biol,2006,243(4):562-574.
  • 4Chen F D,Shi C L.Global attractivity in an almost periodic multi-species nonlinear ecological model[J].Appl Math Comput,2006,180(1):376-392.
  • 5Lin X,Chen F D.Almost periodic solution for a Volterra model with mutual interference and BeddingtonDeAngelis functional response[J].Appl Math Comput,2009,214(2):548-556.
  • 6Tian B D,Qiu Y H,Chen N.Periodic and almost periodic solution for a non-autonomous epidemic predatorprey system with time-delay[J].Appl Math Comput,2009,215(2):779-790.
  • 7黄振坤,陈凤德.具有反馈控制的两种群竞争系统的概周期解[J].生物数学学报,2005,20(1):28-32. 被引量:3
  • 8王晓,李志祥.一个造血模型的概周期正解的存在唯一性和全局吸引性[J].生物数学学报,2008,23(3):449-456. 被引量:5
  • 9倪华,田立新,张平正.一类非线性Lotka-Volterra系统的正概周期解[J].生物数学学报,2011,26(2):329-338. 被引量:2
  • 10Zhang T W,Li Y K,Ye Y.Persistence and almost periodic solutions for a discrete fishing model with feedback control[J].Commun Nonlinear Sci Numer Simulat,2011,16(3):1564-1573.

二级参考文献24

  • 1翁佩萱,梁妙莲.一个造血模型周期解的存在性及其性态[J].应用数学,1995,8(4):434-439. 被引量:12
  • 2杨喜陶,朱焕然.具有无穷时滞的生态竞争系统概周期解存在性[J].生物数学学报,2005,20(4):424-428. 被引量:6
  • 3王全义.概周期解的存在性、唯一性与稳定性[J].数学学报(中文版),1997,40(1):80-89. 被引量:18
  • 4B Xu , R Yuan.On the positive ahnost periodic type solutions for some nonlinear delay integral equations[J].Journal of Mathematical Analysis and Applications,2005,304: 249-268.
  • 5M Wazewska-Czyzewska , A Lasota.Mathematical problems of the red-blood cell system[M].Annual Polish Mathematics Society Series Ⅲ, Applicable Mathematics,1976,623-640.
  • 6T Yoshizawa.Stability theory and the existence of periodic solutions and almost periodic solutions[M]. New York: Springer-Verlag, 1975.
  • 7C Y Zhang.Almost periodic type functions and ergodiciitiy[M]. Science Press, Kluer Academic Piblishers,Boston,2003.
  • 8W A Coppel.Dichotomies in stability theory, Lecture Notes in Math.629[M].Springer-Verlag,Berlin,1978.
  • 9A M Fink.Almost periodic differential equations,Lecture Notes in Math.377[M].Springer-Verlag,New York,1974.
  • 10Kuang Yang. Delay Differential Equations with Applications in Population Dynamics[M].Academic Press,New York,1993.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部